[スポンサーリンク]

化学者のつぶやき

準結晶的なナノパーティクルスーパーラティス

[スポンサーリンク]

 

001.png

2011年のノーベル化学賞は準結晶の発見をしたイスラエル工科大学のシェヒトマン先生に送られました。多くの化学者にとってあまり馴染みのなかったであろうこのテーマは驚きをもって迎えられました。多くの人にとって合金の原子配置などは研究のテーマの外にあるようで、また”対称性”という単語で説明される事象に戸惑いを持った人も多かったのではないかと思います。

しかし最大の問題は多くの人にとって、馴染みがなく、その状態の想像がつきにくいことなのではないかと思います。

ここで”準結晶状態”というものを明確に視覚化している研究がありますので、それを紹介させて頂きます。

 

 

 

Quasicrystalline order in self-assembled binary nanoparticle superlattices

Dmitri V. Talapin, Elena V. Shevchenko, Maryna I. Bodnarchu, Xingchen Ye, Jun Chen & Christopher B. Murray Nature 2009, vol.461 p.964  DOI:10.1038/nature08439

ナノパーティクルというのは、しかるべき条件で自己組織化をすることが知られており、3次元的に綺麗に配列されるその状態をナノパーティクルスーパーラティスといいます。その綺麗な配列は金属結晶における原子の配置と比較されることも多いです。

このような特性からナノパーティクルをビルディングブロックとして用いた、ボトムアップ型アプローチによるマテリアルの開発は現代ナノ化学の大きな分野のひとつです。

さらにこの分野を肥沃にしていることは、使えるナノパーティクルは一種類に限らないということです。複数種類のナノパーティクルを同時に用いることにより、イオン結晶や合金の原子配列ような構造を持ったナノパーティクルスーパーラティスが数々報告されています。[1]

この分野での第一人者はChicago大学のTalapin教授とその妻であるShevchenko教授です。

この論文はこの夫婦がEqually Contributedとしてファーストオーサーとなっていて、まさにこの分野のエースが報告する至高の研究成果といえます。

002.png

この論文では主にサイズの違ったナノ粒子(金、酸化鉄、パラジウム、PbS)を然るべき比率で混合し、共結晶化することにより”準結晶”的なナノパーティクルスーパーラティスを実現しています。

なんといってもこの論文の見所はその綺麗な電子顕微鏡(TEM:Transmission Electron Microscope)写真です。違った種類のナノパーティクルが、規則正しくパッキングされているその御姿は、自然の理が可視化されているものを見るようで一種の畏怖すらも感じさせます。

 

003.png

 

(TEM画像と該当部分のElectron Diffraction Pattern。論文より引用)

このような綺麗な配列は、エントロピー的、静電的、その他色々な相互作用が微妙に絡み合う中で成し遂げられるものです。

この分野の研究は現在どれだけナノパーティクルを共存させることによるシナジーを持った複合マテリアルを作れるかと言う所が焦点となっているともいえます。[2]

とはいえ、このような研究はむしろアプリケーションと言うよりも、単純に綺麗であることに感動するというような、もっと原初的な化学への喜びに訴える素晴らしい研究であると思います。

とはいえこのような発見も、素の”準結晶”という発見なくしては発展し得なかったものとも言えるかも知れません。今回のノーベル賞は、基礎的に重要で大きなインパクトを化学会に残したという意味で意義深いものだと思います。このような基礎知見を素に、どのように発展させていけるかを化学的に考えるのもまた一興ではないでしょうか?

  • 参考文献
[1] (a) E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, C. B. Murray, Nature 2006, 439, 55  DOI: 10.1038/nature04414  (b) E. V. Shevchenko, D. V. Talapin, C. B. Murray, S. O’Brien, JACS 2006, 128, 3620 DOI:  10.1021/ja0564261?[2] J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, C. B. Murray, Nature Materials 2007, 6, 115. doi:10.1038/nmat1826

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 有機反応を俯瞰する ー芳香族求電子置換反応 その 1
  2. 第93回日本化学会付設展示会ケムステキャンペーン!Part I
  3. 多成分反応で交互ポリペプチドを合成
  4. Reaxys Prize 2011発表!
  5. アジサイから薬ができる
  6. 「溶融炭酸塩基の脱プロトン化で有用物質をつくる」スタンフォード大…
  7. 安定な環状ケトンのC–C結合を組み替える
  8. sp3炭素のクロスカップリング反応の機構解明研究

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 分子の動きを電子顕微鏡で観察
  2. ディーン・タンティロ Dean J. Tantillo
  3. アメリカの大学院生だってパーティするっつーの! 【アメリカで Ph.D. を取る –Qualification Exam の巻 後編】
  4. 結晶格子の柔軟性制御によって水に強い有機半導体をつくる
  5. ワムシが出す物質でスタンする住血吸虫のはなし
  6. ぬれ性・レオロジーに学ぶ! 微粒子分散系の界面化学の習得講座
  7. 日本人化学者による卓越した化学研究
  8. 分子運動を世界最高速ムービーで捉える!
  9. イー・タン Yi Tang
  10. E値 Environmental(E)-factor

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

作った分子もペコペコだけど作ったヤツもペコペコした話 –お椀型分子を利用した強誘電体メモリ–

第311回のスポットライトリサーチは、埼玉大学大学院 理工学研究科 基礎化学コー…

【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削減 #リサイクル #液体 #固体 #薄膜 #乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントでは、環境/化学分野の事業・開発課題のソリューションとして、マイクロ波をご紹介…

医療用酸素と工業用酸素の違い

 スズキは29日、インドにある3工場の生産を一時停止すると明らかにした。インドでは新型コロナウイルス…

世界初のジアゾフリーキラル銀カルベン発生法の開発と活性化されていないベンゼノイドの脱芳香族化反応への応用

第310回のスポットライトリサーチは、千葉大学大学院医学薬学府 (根本研究室)・伊藤 翼さんにお願い…

キムワイプをつくった会社 ~キンバリー・クラーク社について~

Tshozoです。本件先日掲載されたこちらのArticleの追っかけでネタ色が強いですが書いてみるこ…

Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow

In multistep continuous flow chemistry, studying c…

三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立てる!

第309回のスポットライトリサーチは、木村舜 博士にお願いしました。金属と有機配位子がネット…

第148回―「フッ素に関わる遷移金属錯体の研究」Graham Saunders准教授

第148回の海外化学者インタビューは、グラハム・サウンダース准教授です。ニュージーランドのハミルトン…

Chem-Station Twitter

PAGE TOP