[スポンサーリンク]

化学者のつぶやき

リガンド結合部位近傍のリジン側鎖をアジド基に置換する

フローニンゲン大学・Martin D. Witteらは、ビオチンとアジド導入剤を組み合わせた試薬「DtBio」を開発し、アビジンに対し水中でタンパク質選択的・位置選択的なリジンアミノ基側鎖のアジドへの変換を達成した。

“Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides”
Lohse, J.; Swier, L. J. Y. M.; Oudshoorn, R. C.; Médard, G.; Kuster, B.; Slotboom, D.-J.; Witte, M. D. Bioconjugate Chem. 201728, 913.  DOI: 10.1021/acs.bioconjchem.7b00110 (冒頭画像は本論文TOCより引用)

問題設定と解決した点

 アジド基は生体直交的な反応に関与し、タンパク質修飾にも用いられる有用な官能基である。 アジド基の導入法としては、停止コドンにアジド含有非天然アミノ酸を対応させる方法が知られているが、煩雑な遺伝子操作を必要とする点が問題となる[1]。

 Witteらは天然型タンパク質に対し、リジン側鎖アミノ基→アジド基への直接的な変換を行い、遺伝子操作なしでアジド基を基質及び位置選択的にタンパク質に導入する方法を開発した。

技術と技術のキモ

 基質及び位置特異性を出すために、強力なビオチンーアビジン相互作用を利用している。リガンド配向型化学[2]の応用例の一つと数えられる。

冒頭論文より引用

 van Hestらにより以前開発されたアジド化試薬Dtを活用している[3]。van Hestらの報告では、リジンの表面露出数が多いために残基間の選択性が出せていなかった。タンパク質混合物に対しての反応も、当然ながら無差別に起こってしまう。これをビオチンと繋げて解決した形になる。

主張の有効性検証

 アビジン、ストレプトアビジン、細胞表面に存在するビオチン結合タンパク(BioY)に選択的なアジド基への変換反応を行い、変換位置もビオチン認識部位の近くのみに限定することに成功した。下記の手法でそれを実証している。

①基質選択性の実証

ストレプトアビジン(Strp)とオボアルブミン(OVA)を混合し、それに対して反応を行った(DtBioでアジド化したのちクリック反応で蛍光物質を結合させて検出を行っている)。すると、DtBio試薬はストレプトアビジン選択的に反応していることが分かった(lane 1)。反応前に加熱し変性させる(lane 3)、もしくはビオチンと競合させる(lane 4, 5)と反応が進まないことから、ビオチン―アビジン相互作用が重要なことが分かる。

冒頭論文より引用

また、大腸菌の溶解物(タンパク質混合物)に対してもストレプトアビジン選択的に反応することがわかった。

②位置選択性の確認

DtBioとストレプトアビジンの結合様式から、アジド化部位(Dt)とLys121が近接する。そこで反応後のストレプトアビジンをトリプシン消化後、LC-MS/MSで解析したところ、Lys121にのみ反応が進行しており、他のリジン及びN末端のアミンは変換されていないこと、すなわち、反応は位置選択的に起こっていることが分かった。

③細胞表面タンパクへの反応

細胞表面に対しても標識反応をかけられることを示すべく、ビオチン結合性タンパクBioYを標的とした反応を行った。BioYは適切な位置にリジンを含まないため、遺伝子操作でN79K体へと変異させたものを細胞表面に発現させている。その結果、野生型BioYでは進行しない修飾反応が蛍光検出で観測された。

議論すべき点

  • ビオチンーアビジン相互作用は特別強いので調べやすいのだろうが、他のもっと弱いリガンド相互作用だとどうなるか。
  • 試薬のチューニングはどこまでできるか。今回リンカーの長さは検討されていない。BioYの実験では遺伝子操作でむしろ基質のほうを試薬に合わせている印象。他のタンパク質に対しても、リガンドとリンカー長の調節だけでどこまで対応できるか。

次に読むべき論文は?

  • リジンへの反応で位置選択性を出そうとしている例
  • リガンド配向型化学の総説[2]

参考文献

  1. Chin, J. W.; Santoro, S. W.; Martin, A. B.; King, D. S.; Wang, L.: Schultz, P. G. J. Am. Chem. Soc. 2002, 124, 9026. DOI: 10.1021/ja027007w
  2. Tsukiji, S.; Hamachi, I. Curr. Opin. Chem. Biol. 2014, 21, 136. doi:10.1016/j.cbpa.2014.07.012
  3. van Dongen, S. F. M.; Teeuwen, R. L. M.; Nallani, M.; van Berkel, S. S.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest, J. C. M. Bioconjugate Chem. 2009, 20, 20. DOI: 10.1021/bc8004304
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アルカリ金属でメトキシアレーンを求核的にアミノ化する
  2. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  3. カガクをつなげるインターネット:サイエンスアゴラ2017
  4. 光分解性シアニン色素をADCのリンカーに組み込む
  5. 【追悼企画】不斉酸化反応のフロンティアー香月 勗
  6. 化学者に役立つWord辞書
  7. 金属を使わない触媒的水素化
  8. Dead Endを回避せよ!「全合成・極限からの一手」①

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学探偵Mr.キュリー6
  2. ジャック・ドゥボシェ Jacques Dubochet
  3. アステラス製薬、過活動膀胱治療剤「ベシケア錠」製造販売承認取得
  4. 植物生合成の謎を解明!?Heteroyohimbine の立体制御
  5. アフリカの化学ってどうよ?
  6. ミック因子 (Myc factor)
  7. スティーブン・ヴァン・スライク Steven Van Slyke
  8. アレルギー治療に有望物質 受容体を標的に、京都大
  9. スコット・デンマーク Scott E. Denmark
  10. モーリス・ブルックハート Maurice S. Brookhart

関連商品

注目情報

注目情報

最新記事

結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開

ケンブリッジ結晶学データセンターとFIZ Karlsruhe は,無償で利用できる結晶データの登録・…

可視光で芳香環を立体選択的に壊す

キラルルイス酸光触媒を用いた不斉脱芳香族的付加環化反応が開発された。ヘテロ芳香環の芳香族性を壊しなが…

科学とは「世界中で共有できるワクワクの源」! 2018年度ロレアル-ユネスコ女性科学者 日本奨励賞

2018年7月18日、フランス大使公邸にて2018年度ロレアル-ユネスコ女性科学者 日本奨励賞の授賞…

クリストフ・レーダー Christoph Rader

クリストフ・レーダー(Christoph Rader、19xx年x月xx日-)は、米国の生化学者・分…

2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Protecting Group

概要2-(トリメチルシリル)エトキシカルボニル(2-(trimethylsilyl)ethoxy…

即戦力のコンパクトFTIR:IRSpirit

化合物の合成や構造決定に勤しんでいる読者の皆様。最近、島津製作所から新しいFTIR(フーリエ変換赤外…

PAGE TOP