[スポンサーリンク]

一般的な話題

究極のエネルギーキャリアきたる?!

究極のエネルギーキャリア、それは意外なところから登場したこの物質かもしれません(画像出典はこちら)。

Tshozoです。窒素固定につき最終的に書こうと思っていたテーマがあちこちから出だしたので速報としてご紹介します。窒素マニア、略して窒マニの私にとっては極めて重要性の高い中身なので、是非化学を生業とされる方々に広く知っていただきたいと思います。

まずは化学工業日報殿が書かれたこちらの記事をリンク先にてご覧ください。下記ロゴからもいけます。なお同ロゴは同社HPトップより拝借いたしました。

Amm_02

この記事の中盤にサラッと書いてますが、凄い内容を含んでいると思います。技術的要旨は下記3点です。

 

 1、アンモニアが使いやすいエネルギーキャリアになりうる

 2、やり方次第では燃やすことが出来、燃料に使える

 3、燃やしても排ガス中のCO2を含まない上、窒素酸化物も極めて少ない(無い?!)

アンモニアの歴史的経緯は以前記載した(こちらこちら)通りですが、このときHaber、Bosch達は「空気と石炭からパン(肥料)を作った」と言われていました。

Amm_04

Haber, Mittasch, Krauch, Bosch BASFの事業基礎を作ったメンバーたち

それと同様、今回のこの案件は記事に基づいたコンセプトが実現すれば、

 「太陽光(などの再生エネルギー)と空気と水から燃料を作ることができる」

という大きなインパクトを秘めている印象を受けます。

なお、工学院大学の雑賀教授がかなり以前から本件の検討を進めていましたのでご存知の方はいるかと思います。しかし2、3は知らない方が多いのではないでしょうか? 特に3ではイメージ上はNOxとかがガンガン出そうなので意外だと思いますが、現在車両排ガス中のNOx低減に同様の分子構造を持つ尿素が既に使用されている(尿素SCRシステム)のですから、確かに言われてみればNOxが増える理屈は無いのです。

Amm_03

パイオニアの一人 工学院大学 雑賀教授(工学院大学HPより

 で、この技術のインパクトは一体どこにあるのか。自分は3つあると思います。

Amm_05

理屈上はこの2つだけでエネルギーを出し入れできる
(右の式は1ステップではまだ誰も実現してないでしょうが・・・)

第一に、カーボンが一切介在しないこと。

第二に、理屈上は窒素(空気)と純水とエネルギーさえあればどこでも創り出せること。これは上の反応式からの帰結ですが(もちろんこの「ΔEinをどう供給するか」が重要な問題になるのもすぐ予想出来ることですが、その課題にどう立ち向かうべきかはまた次回以降に)。

第三に、貯蔵が簡易で大容量を貯められること。この記事を見て調べたところ、その貯蔵の簡易性により、安い金属タンク一つで他候補である電池などに比べかなり大量のエネルギーを貯めることができます(下図)。劇物であることが難点ですが、量産開始から約100年経っていて貯蔵・供給ノウハウが歴史上多く蓄積されていますので大きな問題にはなり難いのではないでしょうか。

Amm_06

LHVエネルギー密度マップ(こちらの資料に筆者がラフ計算して加筆・
同資料はIEA2009年資料より数値を引用したもの) 太矢印近傍がアンモニア

この3つのインパクトを全て持つエネルギーキャリアには他にはありません。唯一対抗馬としてはヒドラジンがありますが、変異原性(発癌性)があることからまず普及は困難でしょう。このことから、エネルギーさえ得られれば究極的なエネルギーキャリアになりうるものではないかと思います。

なお化学界においてはざっと調べたところ、本件と同様の構想を東京大学の西林准教授がこちらのWeb記事で述べています。西林准教授は以前から非金属での窒素固定法の発見や低温での触媒的アンモニア合成で成果を上げており、2011年に下記の成果でNature Chemistryへ論文掲載を果たしています。まだプリミティブなレベルとはいえ、ノーベル賞受賞者R. Schrockからも内容紹介を受ける大きな成果で、今後の関連研究の進展が期待されます。

 

Amm_08

窒素固定のパイオニア 西林仁昭准教授

Amm_07

常温常圧でアンモニア触媒合成に成功した触媒(こちらから引用)
Schrock-Yandulov触媒に比して活性が大きく改善

 ・・・というように色々期待は持てるのですが、このコンセプトの実現にはざっと考えるだけでも多数の問題が頭に浮かんでくると思います。エネルギー供給元、コスト、スケール・・・様々な課題はあるものの、筆者はこのトピックを引き続き扱っていく予定です。その中で、上記の多数の問題に対し『何が本当の課題になりそうなのか』ということを提示出来れば研究ネタとしても面白いと思いますので、今後もお付き合い頂ければうれしいです。

それでは今回はここまで。

【補足】本件は、「燃料>肥料≒食料」という構図を抱えていると考えています。この点ではバイオエタノールと同様であり、どのような位置付けで使用するのかを十分に議論せずに無闇に使用し出すと同じ轍を踏むことになりかねないなあ、というのが非常に気にかかるところです。

The following two tabs change content below.
Tshozo

Tshozo

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. sinceの使い方
  2. 光触媒の活性化機構の解明研究
  3. 文献管理のキラーアプリとなるか? 「ReadCube」
  4. 橋頭位二重結合を有するケイ素化合物の合成と性質解明
  5. 現代の錬金術?―ウンコからグラフェンをつくった話―
  6. NeoCube 「ネオキューブ」
  7. 『元素周期 ~萌えて覚える化学の基本~』がドラマCD化!!!
  8. 科学は探究心を与え続けてくれるもの:2016 ロレアル–ユネスコ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. (-)-MTPA-Cl
  2. サイエンスアゴラ2015総括
  3. 東芝:新型リチウムイオン電池を開発 60倍の速さで充電
  4. 1つの蛍光分子から4色の発光マイクロ球体をつくる
  5. リン Phosphorusー体の中の重要分子DNAの構成成分。肥料にも多用される
  6. 有機アジド(3):アジド導入反応剤
  7. グラファイト、グラフェン、ナノグラフェンの構造と電子・磁気機能【終了】
  8. ロバート・グラブス Robert H. Grubbs
  9. フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(リベラリス)
  10. エンインメタセシス Enyne Metathesis

関連商品

注目情報

注目情報

最新記事

モリブデンのチカラでニトロ化合物から二級アミンをつくる

川上原料のニトロアレーンとアリールボロン酸を用いた二級アミン合成法が報告された。空気下で安定なモリブ…

化学的に覚醒剤を隠す薬物を摘発

化学変化を加えると覚醒剤に加工できる指定薬物を密輸しようとしたなどとして、東京税関成田支署と成田空港…

ニコラス-ターナー Nicholas Turner

ニコラス ターナー (Nicholas Turner, 1960年6月2日イギリス、ケント州Orpi…

博士課程に進学したあなたへ

どういった心構えで研究生活を送るべきかについて、昨年ですが面白い記事がNatureに出ていたので、紹…

【書籍】フロンティア軌道論で理解する有機化学

「軌道の見方がわかる!有機反応を一貫して軌道論に基づいて解説。新しい有機化学を切り拓く読者へ…

少量の塩基だけでアルコールとアルキンをつなぐ

カリウムtert-ブトキシドを触媒とするα-アルキルケトン合成法が報告された。遷移金属を用いず、高い…

Chem-Station Twitter

PAGE TOP