[スポンサーリンク]

一般的な話題

究極のエネルギーキャリアきたる?!

究極のエネルギーキャリア、それは意外なところから登場したこの物質かもしれません(画像出典はこちら)。

Tshozoです。窒素固定につき最終的に書こうと思っていたテーマがあちこちから出だしたので速報としてご紹介します。窒素マニア、略して窒マニの私にとっては極めて重要性の高い中身なので、是非化学を生業とされる方々に広く知っていただきたいと思います。

まずは化学工業日報殿が書かれたこちらの記事をリンク先にてご覧ください。下記ロゴからもいけます。なお同ロゴは同社HPトップより拝借いたしました。

Amm_02

この記事の中盤にサラッと書いてますが、凄い内容を含んでいると思います。技術的要旨は下記3点です。

 

 1、アンモニアが使いやすいエネルギーキャリアになりうる

 2、やり方次第では燃やすことが出来、燃料に使える

 3、燃やしても排ガス中のCO2を含まない上、窒素酸化物も極めて少ない(無い?!)

アンモニアの歴史的経緯は以前記載した(こちらこちら)通りですが、このときHaber、Bosch達は「空気と石炭からパン(肥料)を作った」と言われていました。

Amm_04

Haber, Mittasch, Krauch, Bosch BASFの事業基礎を作ったメンバーたち

それと同様、今回のこの案件は記事に基づいたコンセプトが実現すれば、

 「太陽光(などの再生エネルギー)と空気と水から燃料を作ることができる」

という大きなインパクトを秘めている印象を受けます。

なお、工学院大学の雑賀教授がかなり以前から本件の検討を進めていましたのでご存知の方はいるかと思います。しかし2、3は知らない方が多いのではないでしょうか? 特に3ではイメージ上はNOxとかがガンガン出そうなので意外だと思いますが、現在車両排ガス中のNOx低減に同様の分子構造を持つ尿素が既に使用されている(尿素SCRシステム)のですから、確かに言われてみればNOxが増える理屈は無いのです。

Amm_03

パイオニアの一人 工学院大学 雑賀教授(工学院大学HPより

 で、この技術のインパクトは一体どこにあるのか。自分は3つあると思います。

Amm_05

理屈上はこの2つだけでエネルギーを出し入れできる
(右の式は1ステップではまだ誰も実現してないでしょうが・・・)

第一に、カーボンが一切介在しないこと。

第二に、理屈上は窒素(空気)と純水とエネルギーさえあればどこでも創り出せること。これは上の反応式からの帰結ですが(もちろんこの「ΔEinをどう供給するか」が重要な問題になるのもすぐ予想出来ることですが、その課題にどう立ち向かうべきかはまた次回以降に)。

第三に、貯蔵が簡易で大容量を貯められること。この記事を見て調べたところ、その貯蔵の簡易性により、安い金属タンク一つで他候補である電池などに比べかなり大量のエネルギーを貯めることができます(下図)。劇物であることが難点ですが、量産開始から約100年経っていて貯蔵・供給ノウハウが歴史上多く蓄積されていますので大きな問題にはなり難いのではないでしょうか。

Amm_06

LHVエネルギー密度マップ(こちらの資料に筆者がラフ計算して加筆・
同資料はIEA2009年資料より数値を引用したもの) 太矢印近傍がアンモニア

この3つのインパクトを全て持つエネルギーキャリアには他にはありません。唯一対抗馬としてはヒドラジンがありますが、変異原性(発癌性)があることからまず普及は困難でしょう。このことから、エネルギーさえ得られれば究極的なエネルギーキャリアになりうるものではないかと思います。

なお化学界においてはざっと調べたところ、本件と同様の構想を東京大学の西林准教授がこちらのWeb記事で述べています。西林准教授は以前から非金属での窒素固定法の発見や低温での触媒的アンモニア合成で成果を上げており、2011年に下記の成果でNature Chemistryへ論文掲載を果たしています。まだプリミティブなレベルとはいえ、ノーベル賞受賞者R. Schrockからも内容紹介を受ける大きな成果で、今後の関連研究の進展が期待されます。

 

Amm_08

窒素固定のパイオニア 西林仁昭准教授

Amm_07

常温常圧でアンモニア触媒合成に成功した触媒(こちらから引用)
Schrock-Yandulov触媒に比して活性が大きく改善

 ・・・というように色々期待は持てるのですが、このコンセプトの実現にはざっと考えるだけでも多数の問題が頭に浮かんでくると思います。エネルギー供給元、コスト、スケール・・・様々な課題はあるものの、筆者はこのトピックを引き続き扱っていく予定です。その中で、上記の多数の問題に対し『何が本当の課題になりそうなのか』ということを提示出来れば研究ネタとしても面白いと思いますので、今後もお付き合い頂ければうれしいです。

それでは今回はここまで。

【補足】本件は、「燃料>肥料≒食料」という構図を抱えていると考えています。この点ではバイオエタノールと同様であり、どのような位置付けで使用するのかを十分に議論せずに無闇に使用し出すと同じ轍を踏むことになりかねないなあ、というのが非常に気にかかるところです。

The following two tabs change content below.
Tshozo

Tshozo

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 研究室での英語【Part1】
  2. Reaxys Prize 2012受賞者決定!
  3. 「超分子ポリマーを精密につくる」ヴュルツブルク大学・Würthn…
  4. 現代の錬金術?―ウンコからグラフェンをつくった話―
  5. ご注文は海外大学院ですか?〜渡航編〜
  6. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  7. 世界初!反転層型ダイヤMOSFETの動作実証に成功
  8. レビュー多くてもよくね?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 武田、フリードライヒ失調症薬をスイス社と開発
  2. メディビック、抗がん剤「グルフォスファミド」の第II相試験を開始
  3. クレイグ・ホーカー Craig J. Hawker
  4. セメントから超電導物質 絶縁体のはずなのに
  5. タンパク質の構造と機能―ゲノム時代のアプローチ
  6. Chemistry Reference Resolverをさらに便利に!
  7. 宮沢賢治の元素図鑑
  8. 超原子結晶!TCNE!インターカレーション!!!
  9. リピンスキーの「ルール・オブ・ファイブ」 Lipinski’s “Rule of Five”
  10. 有機反応の仕組みと考え方

関連商品

注目情報

注目情報

最新記事

電池長寿命化へ、充電するたびに自己修復する電極材

東京大学大学院工学系研究科の山田淳夫教授らは、充電するたびに自己修復を繰り返し、電池性能の劣化を防ぐ…

(−)-Salinosporamide Aの全合成

(−)-salinosporamide Aの立体選択的全合成が達成された。アザ-ペイン転位/ヒドロア…

クラウド版オフィススイートを使ってみよう

クラウド版オフィススイートとはOffice onlineやGoogle ドライブなどのことで、ソフト…

NHCが触媒する不斉ヒドロフッ素化

キラルなN–ヘテロ環状カルベン(NHC)を触媒として用いたα,β-不飽和アルデヒドに対する不斉ヒドロ…

ケミカルバイオロジーとバイオケミストリー

突然ですが、質問です。有機化学と無機化学。違いは説明できますか?「生体物質をあつかうものが有…

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

Chem-Station Twitter

PAGE TOP