[スポンサーリンク]

一般的な話題

究極のエネルギーキャリアきたる?!

[スポンサーリンク]

究極のエネルギーキャリア、それは意外なところから登場したこの物質かもしれません(画像出典はこちら)。

Tshozoです。窒素固定につき最終的に書こうと思っていたテーマがあちこちから出だしたので速報としてご紹介します。窒素マニア、略して窒マニの私にとっては極めて重要性の高い中身なので、是非化学を生業とされる方々に広く知っていただきたいと思います。

まずは化学工業日報殿が書かれたこちらの記事をリンク先にてご覧ください。下記ロゴからもいけます。なお同ロゴは同社HPトップより拝借いたしました。

Amm_02

この記事の中盤にサラッと書いてますが、凄い内容を含んでいると思います。技術的要旨は下記3点です。

 

 1、アンモニアが使いやすいエネルギーキャリアになりうる

 2、やり方次第では燃やすことが出来、燃料に使える

 3、燃やしても排ガス中のCO2を含まない上、窒素酸化物も極めて少ない(無い?!)

アンモニアの歴史的経緯は以前記載した(こちらこちら)通りですが、このときHaber、Bosch達は「空気と石炭からパン(肥料)を作った」と言われていました。

Amm_04

Haber, Mittasch, Krauch, Bosch BASFの事業基礎を作ったメンバーたち

それと同様、今回のこの案件は記事に基づいたコンセプトが実現すれば、

 「太陽光(などの再生エネルギー)と空気と水から燃料を作ることができる」

という大きなインパクトを秘めている印象を受けます。

なお、工学院大学の雑賀教授がかなり以前から本件の検討を進めていましたのでご存知の方はいるかと思います。しかし2、3は知らない方が多いのではないでしょうか? 特に3ではイメージ上はNOxとかがガンガン出そうなので意外だと思いますが、現在車両排ガス中のNOx低減に同様の分子構造を持つ尿素が既に使用されている(尿素SCRシステム)のですから、確かに言われてみればNOxが増える理屈は無いのです。

Amm_03

パイオニアの一人 工学院大学 雑賀教授(工学院大学HPより

 で、この技術のインパクトは一体どこにあるのか。自分は3つあると思います。

Amm_05

理屈上はこの2つだけでエネルギーを出し入れできる
(右の式は1ステップではまだ誰も実現してないでしょうが・・・)

第一に、カーボンが一切介在しないこと。

第二に、理屈上は窒素(空気)と純水とエネルギーさえあればどこでも創り出せること。これは上の反応式からの帰結ですが(もちろんこの「ΔEinをどう供給するか」が重要な問題になるのもすぐ予想出来ることですが、その課題にどう立ち向かうべきかはまた次回以降に)。

第三に、貯蔵が簡易で大容量を貯められること。この記事を見て調べたところ、その貯蔵の簡易性により、安い金属タンク一つで他候補である電池などに比べかなり大量のエネルギーを貯めることができます(下図)。劇物であることが難点ですが、量産開始から約100年経っていて貯蔵・供給ノウハウが歴史上多く蓄積されていますので大きな問題にはなり難いのではないでしょうか。

Amm_06

LHVエネルギー密度マップ(こちらの資料に筆者がラフ計算して加筆・
同資料はIEA2009年資料より数値を引用したもの) 太矢印近傍がアンモニア

この3つのインパクトを全て持つエネルギーキャリアには他にはありません。唯一対抗馬としてはヒドラジンがありますが、変異原性(発癌性)があることからまず普及は困難でしょう。このことから、エネルギーさえ得られれば究極的なエネルギーキャリアになりうるものではないかと思います。

なお化学界においてはざっと調べたところ、本件と同様の構想を東京大学の西林准教授がこちらのWeb記事で述べています。西林准教授は以前から非金属での窒素固定法の発見や低温での触媒的アンモニア合成で成果を上げており、2011年に下記の成果でNature Chemistryへ論文掲載を果たしています。まだプリミティブなレベルとはいえ、ノーベル賞受賞者R. Schrockからも内容紹介を受ける大きな成果で、今後の関連研究の進展が期待されます。

 

Amm_08

窒素固定のパイオニア 西林仁昭准教授

Amm_07

常温常圧でアンモニア触媒合成に成功した触媒(こちらから引用)
Schrock-Yandulov触媒に比して活性が大きく改善

 ・・・というように色々期待は持てるのですが、このコンセプトの実現にはざっと考えるだけでも多数の問題が頭に浮かんでくると思います。エネルギー供給元、コスト、スケール・・・様々な課題はあるものの、筆者はこのトピックを引き続き扱っていく予定です。その中で、上記の多数の問題に対し『何が本当の課題になりそうなのか』ということを提示出来れば研究ネタとしても面白いと思いますので、今後もお付き合い頂ければうれしいです。

それでは今回はここまで。

【補足】本件は、「燃料>肥料≒食料」という構図を抱えていると考えています。この点ではバイオエタノールと同様であり、どのような位置付けで使用するのかを十分に議論せずに無闇に使用し出すと同じ轍を踏むことになりかねないなあ、というのが非常に気にかかるところです。

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 第21回ケムステVシンポ「Grubbs触媒が導く合成戦略」を開催…
  2. ワイリーからキャンペーンのご案内 – 化学会・薬学会…
  3. 化学系人材の、より良い将来選択のために
  4. ポンコツ博士の海外奮闘録XXIII ~博士の危険地帯サバイバル …
  5. 還元的にアルケンを炭素官能基で修飾する
  6. 高収率・高選択性―信頼性の限界はどこにある?
  7. 企業における研究開発の多様な目的
  8. ADC迅速製造装置の実現 -フローリアクタによる抗体薬物複合体の…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 中高生・高専生でも研究が学べる!サイエンスメンタープログラム
  2. メソリティック開裂を経由するカルボカチオンの触媒的生成法
  3. 難分解性高分子を分解する画期的アプローチ:側鎖のC-H結合を活性化して主鎖のC-C結合を切る
  4. FT-IR(赤外分光法)の基礎と高分子材料分析の実際2【終了】
  5. 2009年5月人気化学書籍ランキング
  6. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ⑤ 最終回
  7. 第一回 人工分子マシンの合成に挑む-David Leigh教授-
  8. 細胞を模倣したコンピューター制御可能なリアクター
  9. 合成生物学を疾病治療に応用する
  10. 第31回「植物生物活性天然物のケミカルバイオロジー」 上田 実 教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

カルボン酸のb位C(sp3)–H結合を直接臭素化できるイソキノリン配位子が開発された。イソキノリンに…

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP