[スポンサーリンク]

一般的な話題

究極のエネルギーキャリアきたる?!

究極のエネルギーキャリア、それは意外なところから登場したこの物質かもしれません(画像出典はこちら)。

Tshozoです。窒素固定につき最終的に書こうと思っていたテーマがあちこちから出だしたので速報としてご紹介します。窒素マニア、略して窒マニの私にとっては極めて重要性の高い中身なので、是非化学を生業とされる方々に広く知っていただきたいと思います。

まずは化学工業日報殿が書かれたこちらの記事をリンク先にてご覧ください。下記ロゴからもいけます。なお同ロゴは同社HPトップより拝借いたしました。

Amm_02

この記事の中盤にサラッと書いてますが、凄い内容を含んでいると思います。技術的要旨は下記3点です。

 

 1、アンモニアが使いやすいエネルギーキャリアになりうる

 2、やり方次第では燃やすことが出来、燃料に使える

 3、燃やしても排ガス中のCO2を含まない上、窒素酸化物も極めて少ない(無い?!)

アンモニアの歴史的経緯は以前記載した(こちらこちら)通りですが、このときHaber、Bosch達は「空気と石炭からパン(肥料)を作った」と言われていました。

Amm_04

Haber, Mittasch, Krauch, Bosch BASFの事業基礎を作ったメンバーたち

それと同様、今回のこの案件は記事に基づいたコンセプトが実現すれば、

 「太陽光(などの再生エネルギー)と空気と水から燃料を作ることができる」

という大きなインパクトを秘めている印象を受けます。

なお、工学院大学の雑賀教授がかなり以前から本件の検討を進めていましたのでご存知の方はいるかと思います。しかし2、3は知らない方が多いのではないでしょうか? 特に3ではイメージ上はNOxとかがガンガン出そうなので意外だと思いますが、現在車両排ガス中のNOx低減に同様の分子構造を持つ尿素が既に使用されている(尿素SCRシステム)のですから、確かに言われてみればNOxが増える理屈は無いのです。

Amm_03

パイオニアの一人 工学院大学 雑賀教授(工学院大学HPより

 で、この技術のインパクトは一体どこにあるのか。自分は3つあると思います。

Amm_05

理屈上はこの2つだけでエネルギーを出し入れできる
(右の式は1ステップではまだ誰も実現してないでしょうが・・・)

第一に、カーボンが一切介在しないこと。

第二に、理屈上は窒素(空気)と純水とエネルギーさえあればどこでも創り出せること。これは上の反応式からの帰結ですが(もちろんこの「ΔEinをどう供給するか」が重要な問題になるのもすぐ予想出来ることですが、その課題にどう立ち向かうべきかはまた次回以降に)。

第三に、貯蔵が簡易で大容量を貯められること。この記事を見て調べたところ、その貯蔵の簡易性により、安い金属タンク一つで他候補である電池などに比べかなり大量のエネルギーを貯めることができます(下図)。劇物であることが難点ですが、量産開始から約100年経っていて貯蔵・供給ノウハウが歴史上多く蓄積されていますので大きな問題にはなり難いのではないでしょうか。

Amm_06

LHVエネルギー密度マップ(こちらの資料に筆者がラフ計算して加筆・
同資料はIEA2009年資料より数値を引用したもの) 太矢印近傍がアンモニア

この3つのインパクトを全て持つエネルギーキャリアには他にはありません。唯一対抗馬としてはヒドラジンがありますが、変異原性(発癌性)があることからまず普及は困難でしょう。このことから、エネルギーさえ得られれば究極的なエネルギーキャリアになりうるものではないかと思います。

なお化学界においてはざっと調べたところ、本件と同様の構想を東京大学の西林准教授がこちらのWeb記事で述べています。西林准教授は以前から非金属での窒素固定法の発見や低温での触媒的アンモニア合成で成果を上げており、2011年に下記の成果でNature Chemistryへ論文掲載を果たしています。まだプリミティブなレベルとはいえ、ノーベル賞受賞者R. Schrockからも内容紹介を受ける大きな成果で、今後の関連研究の進展が期待されます。

 

Amm_08

窒素固定のパイオニア 西林仁昭准教授

Amm_07

常温常圧でアンモニア触媒合成に成功した触媒(こちらから引用)
Schrock-Yandulov触媒に比して活性が大きく改善

 ・・・というように色々期待は持てるのですが、このコンセプトの実現にはざっと考えるだけでも多数の問題が頭に浮かんでくると思います。エネルギー供給元、コスト、スケール・・・様々な課題はあるものの、筆者はこのトピックを引き続き扱っていく予定です。その中で、上記の多数の問題に対し『何が本当の課題になりそうなのか』ということを提示出来れば研究ネタとしても面白いと思いますので、今後もお付き合い頂ければうれしいです。

それでは今回はここまで。

【補足】本件は、「燃料>肥料≒食料」という構図を抱えていると考えています。この点ではバイオエタノールと同様であり、どのような位置付けで使用するのかを十分に議論せずに無闇に使用し出すと同じ轍を踏むことになりかねないなあ、というのが非常に気にかかるところです。

The following two tabs change content below.
Tshozo

Tshozo

メーカ開発経験者(電気)。54歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 【書籍】アリエナイ化学実験の世界へ―『Mad Science―炎…
  2. 地球温暖化が食物連鎖に影響 – 生態化学量論の視点か…
  3. 電気ウナギに学ぶ:柔らかい電池の開発
  4. 5分でできる!Excelでグラフを綺麗に書くコツ
  5. 化学系学生のための企業合同説明会
  6. 投票!2014年ノーベル化学賞は誰の手に??
  7. メソリティック開裂を経由するカルボカチオンの触媒的生成法
  8. 日本ビュッヒ「Cartridger」:カラムを均一・高効率で作成…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第15回 触媒の力で斬新な炭素骨格構築 中尾 佳亮講師
  2. 触媒量の金属錯体でリビング開環メタセシス重合を操る
  3. フィッツィンガー キノリン合成 Pfitzinger Quinoline Synthesis
  4. 有機合成化学の豆知識botを作ってみた
  5. レイングルーバー・バッチョ インドール合成 Leimgruber-Batcho indole synthesis
  6. 化学パズル・不斉窒素化合物
  7. ロナルド・ブレズロウ賞・受賞者一覧
  8. 燃える化学の動画を集めてみました
  9. この輪っか状の分子パないの!
  10. ダキン・ウェスト反応 Dakin-West Reaction

関連商品

注目情報

注目情報

最新記事

特定の場所の遺伝子を活性化できる新しい分子の開発

ついにスポットライトリサーチも150回。第150回目は理化学研究所 博士研究員の谷口 純一 (たにぐ…

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

「アジア発メジャー」狙う大陽日酸、欧州市場に参入

大陽日酸は北米に次ぐ成長が見込める欧州市場に参入を果たす。同業の米プラクスエアが欧州で展開する産業ガ…

典型元素触媒による水素を還元剤とする第一級アミンの還元的アルキル化

第149回のスポットライトリサーチは、大阪大学大学院工学研究科 博士後期課程3年の木下 拓也 (きの…

有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン

化学協会が発行する有機合成化学協会誌、2018年7月号がオンライン公開されました。今月号のキ…

Chem-Station Twitter

PAGE TOP