[スポンサーリンク]

一般的な話題

私が思う化学史上最大の成果-2

[スポンサーリンク]

alchemy_edit.jpg

 さて「私が思う化学史上最大の成果」。前回の続きとなります。

本書の内容は大きく4部に分かれ、本当にざっくりと記述すると

A.人類がどのように肥料を得てきたか~南米硝石の争奪戦と枯渇

B.Haberのラボプラント実証~Boschによる量産化の苦闘

C.第一次世界大戦に組み込まれた化学工業

D.第二次世界大戦に突き進むドイツの中でのHaber、Bosch二人の苦悩

 

のようになります。さて、このうちBのHaber-Bosch法の実証~量産化をさらに詳細に見ていきますと、大きく次の5つのハードルがありました。

1.ラボスケールの高圧(>300気圧)アンモニア合成実現

2.触媒の低コスト化

3.原料ガス(窒素・水素)の供給と高純度化

4.巨大高圧リアクターの実現

5.周辺部品(バルブ類、計測器類、・・・)の完成

それぞれを追って見ていきましょう。

ハードル1:ラボスケールの高圧(>300気圧)アンモニア合成実現

この合成実現のためのコンセプトをHaber, ラボリアクターをle Rossignol, 検証のための数多くの実験を田丸節郎(のちの理研創設に貢献)が実現しました。Haberの功績は述べるまでもありませんが、アンモニアの分解・合成の平衡定数を綿密に追うことで必ず合成できるという理屈を打ち立てた点はまさに炯眼としか言いようがありません。またRossignol、田丸は共に極めて優れた実験技術者で、彼らの存在がこの実証に大きな影響と与えました(ただし田丸節郎の名前は本書に記載されていません・・・この点は本書の数少ない欠点だと思います)。

Tamaru-Rossignol

実証実験に活躍したle Rossignolと田丸節郎
(鮮明なle Rossignolの画像は見つかっておりません・・・
田丸節郎の画像はこちらより引用しました)

 しかし1の実証の時点での触媒はなんと非常に高価なオスミウムOs又はウランUであり、低コストな代価品を探すことが喫緊の課題でした。それが2つめのハードルとなります

ハードル2:触媒の低コスト化

この難課題を解決したのがBASFの若き触媒開発リーダAlwin Mittaschです。彼は最終的にFeを主成分とし、Al2O3、K2Oを微量含んだ組成にたどり着きますが、これは2,500種類以上の材料、20,000回に及ぶ実験という凄まじいスクリーニングに基づいたものでした。

AM
Alwin Mittasch Ostwaldのもとでニッケル触媒を研究後、BASFに入社

晩年までBASFに勤務し、数々の不均一触媒を発見した

ハードル3:原料ガス(窒素・水素)の供給と高純度化

これはあまり知られていませんが、実は2,4と並ぶ巨大な課題でした。N2供給・高純度化は比較的すんなり成功したものの、化石燃料などからH2を取り出すための高温水蒸気水改質法、その副生成物である触媒被毒成分CO除去の確立が難航を極めたためです。結局、後にBoschの片腕となるCarl KrauchによってCO除去溶液が発見され、解決されたのですが、この問題にBoschは相当悩まされていたようで、いよいよという時にKrauchに解決を命じて本人は休暇に出る、という面白い行動に出ています(本書未記載)。要は部下に課題を丸投げしたわけですが、休暇から帰ってきてみると望みの性能の溶液が見つかっていたそうです。こういった行為も場合によっては良い結果を生むものですね。

Carl_Krauch_in_einem_Labor_bei_Bayer_1942

Carl Krauch
ハイデルベルグ大学でPh.D.を取得した辣腕技術者
後にBoschに代わりI.G.Farbenを率いることになる

ハードル4および5:巨大高圧リアクターの実現と周辺部品の完成

これらはBosch本人による問題発見と強力なリーダシップによって解決されますが、この部分は是非本書をお読み下さい。特に度重なる困難にもひるまず装置の大型化を成し遂げたBoschの信念、リーダシップ、それによくフォローしたBASFスタッフの協力、そして全体の開発進め方と、研究者だけでなく一般の技術者にも是非お読み頂きたい内容です。なおこの解決の過程で非常に大きな影響を与えたのは、Boschが「まっとうな」化学者ではなく冶金学(Metallurgy)を修めていたことでした。当時のBASFではいわゆる傍流だったわけですが・・・人間何が幸いするかわからんものです。

最後に何より驚くのは、この2~5はたった4年弱で完了したということです。本文には設備や分析機器への多大な投資につき触れられていますが、加えて相当な労働力酷使と無茶関係者の努力があったと推測されます。

Stars.jpg

(Haber、Krauchの写真は日本語/英語版Wikipedia、Mittaschはこちら、Boschの画像はこちらより引用させて頂きました)

 本発明から100年経った現在もほとんどこの時点で創造されたシステム、触媒、手法、リアクターでアンモニアが合成されています。この書物で、人が生きていく限り必要な食料、それを支える肥料に関わる発明がどのように成し遂げられたかを見ていただければ紹介者として嬉しい限りです。

なおこのような偉大な発明を成し遂げた主人公の2人、HaberとBoschのその後は幸せなものではありませんでした。Haberは塩素系毒ガスの開発に携わったことで世間の評判を落とした上、ユダヤ人であったためにナチス(初期)により「最も愛し貢献してきたはずの」ドイツを追放されます。その後各国を転々としワイツマン(イスラエル初代大統領)からの誘いで当時建国途上のイスラエルへ向かう旅中、スイスのBaselで客死しました。一方Boschも経営者としてBASFを支えるために国と戦争への加担を強めていかざるをえず、その中でナチスに反抗するものの、結局自分が築き上げてきたものが戦争に利用されていくことを制止出来ず苦悩の中Heidelbergでこの世を去ります。いずれも「技術が権力のツールとしてのみ使われた最も不幸なケース」だったと言えましょう。おそらく二人とも化学者としては最も成功したケースであるはずなのに、このような結末と、彼らの成果のインパクトを考えるにつけ、もっと幸せな最期を迎えてもらいたかったなと思わざるを得ません。

Haber-Bosch-Late

晩年のHaberとBoschの写真(引用はこちらこちら)。
Haberは晩年には心臓を、Boschは精神を患っていたという。

 HaberはBaselのFriedhof am Hornliの高台で、またBoschはドイツHeidelbergのBerg Friedhofで眠っています。もし近くで学会などがあった場合には、こうした二人の生き方に思いを馳せつつお墓を尋ねてみてはいかがでしょうか。またHeidelbergにはBosch Museumがあり、彼の研究人生に関わる資料が多く展示されていますので是非足をお運びください。

 Graves

Haber, Boschそれぞれのお墓
(Haberのお墓の写真はこちら、Boschの写真はこちらから引用致しました)

なおFriedhof am Hornliには入り口付近に検索システムがあり、Haberの墓の位置はそこから調べられます。Berg Friedhofにはそうした検索システムは無いのでなかなか探すのが難渋しますが、Boschの墓は裏手のSteigerwegという裏道から上がった、1番目の駐車場の隣の門から行けます。門から真っ直ぐに西方向へ斜面を降りずに進むと写真のお墓があります。なおMittaschも同じBerg Friedhofに眠っています。

Bosch Museum

HeidelbergのBosch Museum
(写真はこちらから引用致しました・Bosch Museum のHPはこちら)

 さて、今回書籍紹介と同時にちょこっと記述したHaber-Bosch法、100年かけてほぼ「完璧な技術」になりつつありますが、未だ大きな弱点があります。それは非常に高圧・高温の反応である、というだけではありません。次回以降はそれについてご説明出来ればと思います。

今後ともご指導ご鞭撻と、叱咤激励を宜しくお願い申し上げます。

  • 関連書籍
Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. MEDCHEM NEWS 34-4 号「新しいモダリティとして注…
  2. 新たな環状スズ化合物の合成とダブルカップリングへの応用
  3. 中性ケイ素触媒でヒドロシリル化
  4. 化学にインスパイアされたジュエリー
  5. 腎細胞がん治療の新薬ベルツチファン製造プロセスの開発
  6. アノマー効果を説明できますか?
  7. 金と炭素がつくりだす新たな動的共有結合性を利用した新たな炭素ナノ…
  8. カイコが紡ぐクモの糸

注目情報

ピックアップ記事

  1. 化学企業のグローバル・トップ50が発表【2023年版】
  2. 触媒的芳香族求核置換反応
  3. 環状ペプチドの効率的な化学-酵素ハイブリッド合成法の開発
  4. 動画:知られざる元素の驚きの性質
  5. アンモニアがふたたび世界を変える ~第2次世界大戦中のとある出来事~
  6. ここまで進んだ次世代医薬品―ちょっと未来の薬の科学
  7. 尿から薬?! ~意外な由来の医薬品~ その1
  8. 有機EL organic electroluminescence
  9. 日本プロセス化学会2019 ウインターシンポジウム
  10. Appel反応を用いるホスフィンの不斉酸化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年2月
 12345
6789101112
13141516171819
20212223242526
272829  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP