[スポンサーリンク]

化学者のつぶやき

核酸塩基は4つだけではない

[スポンサーリンク]

DNAやRNAに含まれる核酸塩基、あなたはいくつあげられますか?

アデニングアニンシトシンチミンに加えて、ウラシルもあげられれば及第点。構造式も書ければなおよし。しかし、天然の核酸塩基だけでもまだまだありますよ。

さらには、ユニークな機能を持たせた人工の核酸塩基まで登場して、事態は深みを増していきます。分析機器の発展もさることながら、ひとの手で合成する方法も洗練され、核酸の世界に化学のちからここにあり、です。

1970から1980年代くらいは、特別な核酸塩基の単離と、全合成が華やいでいました。2000年代に入っても、分析機器の高性能化を背景に、新たな核酸塩基がいくつか報告されています。

えっ? 天然の核酸塩基だけでも100以上あるって?

とりあえず、とくにことわりのないかぎり、ヒトを念頭に話を進めます。また、本当は糖がついているかどうかでアデニンとかアデノシンとか書き分けた方がよいのですけれども、ここは総説を世界に発表する場所ではありませんし、厳密さはいくらか割愛させていただきます。

 

ゲノムDNA

ゲノムDNAで有名な修飾塩基は、エピジェネティクスでもおなじみ、5位の炭素原子に対するメチル化シトシンでしょう。遺伝子刷り込みをはじめ、多彩な生命現象にこのDNAメチル化は噛んでいます。ホスホジエステル結合を挟んでシトシンとグアニンが隣り合って多く存在するCpGアイランドと呼ばれる領域でメチル化シトシンは見られます。

メチル化シトシン

メチル化シトシン

メチル化シトシンを認識するDNAメチル化酵素が存在し、DNAの一方の鎖でシトシンがメチル化されていると、反対側のシトシンもメチル化されるため、塩基の修飾は細胞の系譜ごと代々にわたって受け継がれます。親のストレスが子に遺伝する、といった現象も、このような仕組みで、エピジェネティックに起きています。

また、このようなCpGアイランドのメチル化は細菌では見られないことを利用し、わたしたち哺乳類は、驚くべきことにDNAで自己と他者を区別できます。ノーベル賞でおなじみToll様受容体(Toll like receptor)のひとつTLR9タンパク質が、メチル化されていないCpG核酸断片を認識し、免疫機能をオンにするのです[1]。このDNA、細菌由来だな、と。

ヒドロキシメチル化シトシン

ヒドロキシメチル化シトシン

さらに、最近になって、酸化反応を受けたヒドロキシメチル化シトシンもまた遺伝子の発現を制御するために重要だと判明[2]しました。DNAの修飾塩基をめぐり、事態はさらに深みを増しています。

 

伝令RNA

伝令RNAはというと、まずあげておくべきは5プライム末端のキャップ構造でしょうか。ここで活躍する核酸塩基は7位窒素原子に対するメチル化グアニンです。RNAの一端にこの特殊構造があるおかげで、RNAは細胞内で分解をまぬがれ、翻訳の開始に必要な因子が認識しリボソームによるペプチド合成が可能になります。トリリン酸結合を介して、さかさまにひっくりかえってメチル化グアニンがくっついている点もユニークです。

GREENcapG

キャップ構造

もうひとつはイノシンです。DNAの遺伝情報が伝令RNAに転写され、伝令RNAの塩基配列がタンパク質のアミノ酸配列に翻訳される2つのステップの間には、RNAの成熟にともないいくつかの加工が施されます。そのひとつがRNA編集と呼ばれる書き換え現象です。酵素反応で脱アミノ化し一部のアデニンがイノシンへと変換されます。コドンとアンチコドンの対応では、イノシンがグアニンとしても読まれるため、翻訳でできあがったタンパク質のアミノ酸配列はしばしば別のものになります。例えば、神経疾患のカギを握るイオンチャネルの中にはRNA編集の必要なものがあり、患者ではRNA編集が鈍くなっていたなど、多様な生命現象にRNA編集は関与しています。

GREENI

イノシン

近年[3]になってシュードウラシルまでも伝令RNAに見つかりました。ウラシルの骨格が反転してしまった変わりものです。翻訳の進行を助けているようですが、こちらも事態はさらに深みを増しています。

シュードウラシル

シュードウラシル

運搬RNA

変わりモノ核酸塩基の玉手箱と言えば、運搬RNAでしょう。今までに知られた特別な修飾塩基の数は、実に100を超えています。とくに、伝令RNAの3つ組コドンを認識する運搬RNAの3つ組アンチコドンの1番目か3番目で、多様な修飾塩基が見られ、運搬RNAに対応するアミノ酸ごと、細菌の場合、古細菌の場合、ヒトを含めた真核生物の場合、ミトコンドリアのような細胞小器官の場合、それぞれでわずかな違いが散見されます。素直な修飾されていないそのままのアンチコドンも少なくないのですが、このように例外は多数あるようです。本当に生き物がこんな変わりものを作っているのか疑いたくもなりますが、生合成酵素が単離され、結晶構造解析が済み、反応機構の提案まで研究は進みつつあります。

1:ジヒドロウラシル/2:チオウラシル/3:メチルアミノセレノウラシル/4:タウリノメチルウラシル 5:リジシン/6:アグマチニルシトシン/7:アーキオシン/8:キューオシン/9:ワイオシン

1:ジヒドロウラシル/2:チオウラシル/3:メチルアミノセレノウラシル/4:タウリノメチルウラシル
5:リジシン/6:アグマチニルシトシン/7:アーキオシン/8:キューオシン/9:ワイオシン

人工の核酸塩基

特別な機能を持たせた人工の核酸もたくさん開発されています[4]。例えば、光を当てたり、特別な試薬を加えたりするだけで、遺伝子の発現が制御できると、新たにたくさんの可能性が拓けそうですよね。

アゾベンゼンのシス-トランス変換を活用し光でDNAの二量化を制御 / 図は論文[4]を改変

アゾベンゼンのシス-トランス変換を活用し光でDNAの二量化を制御 / 図は論文[4]を改変

ヌクレオベースは結論を出せない

参考論文をいくつかあげましたが、夏の暑い日にアイスクリームでも食べながら読んでみてはいかがでしょうか。いったい核酸塩基(nucleobase)はいくつあるのか、好奇心はいつでも科学の推進力です。退屈な窓辺に吹き込む風に、何か変わりそうな気がしませんか。

塩基だけに限定しなくても、核酸の世界はバラエティー豊かです。ヒ素入りDNAはない[14],[15]ようですが、硫黄入りDNAはあります[16]しね。ひょんなことから、新規な生体模倣の機能材料が開発されるかもしれませんよ。

 

関連サイト

 

参考論文

[1] Toll様受容体は細菌DNAを認識する

“A Toll-like receptor recognizes bacterial DNA” Hiroaki Hemmi et al. Nature 2000 DOI: 10.1038/35047123

[2] メチル化シトシンをヒドロキシメチル化シトシンに変える哺乳類に共通した意味

“Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1” Mamta Tahiliani et al. Science 2009 DOI: 10.1126/science.1170116

[3] 伝令RNAのシュードウラシルはナンセンスコドンを乗り越えるために必要

“Converting nonsense codons into sense codons by argeted pseudouridylation” John Karijolich et al. Nature 2011 DOI: 10.1038/nature10165

[4] アゾベンゼンでDNAを制御

“Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription” Hiroyuki Asanuma et al. Nature Protocol 2007 DOI: 10.1038/nprot.2006.465

[5] 運搬RNAを修飾してワイオシンを作る酵素の立体構造

“Crystal Structure of the Radical SAM Enzyme Catalyzing Tricyclic Modified Base Formation in tRNA” Yoko Suzuki et al. J. Mol. Biol. 2007 DOI: 10.1016/j.jmb.2007.07.024

[6] 運搬RNAを修飾してチオウラシルを作る酵素の立体構造

“Snapshots of tRNA sulphuration via an adenylated intermediate” Tomoyuki Numata et al. Nature2006 DOI: 10.1038/nature04896

[7] 運搬RNAを修飾してセレノウラシルを作る酵素の同定

“The Escherichia coli ybbB gene encodes a selenophosphate-dependent tRNA 2-selenouridine synthase” Matt D. Wolfe et al. J. Biol. Chem. 2004 DOI: 10.1074/jbc.M310442200

[8] タウリンで修飾された核酸塩基がミトコンドリアの運搬RNAで機能

“Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases” Takeo Suzuki et al. Eur. Mol. Biol. Organ. 2002 DOI: 10.1093/emboj/cdf656

[9] アグマチニルシチジンの単離と化学合成による確認、さらに生合成酵素同定

“Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea” Yoshiho Ikeuchi et al. Nature Chemical Biology 2010 DOI: 10.1038/nchembio.323

[10] リシジンの単離と化学合成による確認

“A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli” T Muramatsu et al. J. Biol. Chem. 1988

[11] アーキオシンの単離と化学合成による確認

“Structure of the archaeal transfer RNA nucleoside G*-15 (2-amino-4,7-dihydro- 4-oxo-7-beta-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyrimidine-5-carboximid amide (archaeosine))” J M Gregson et al. J. Biol. Chem. 1993

[12] ワイブトシンの全合成と立体配置の決定
“Total synthesis of dl-Y base from yeast phenylalanine transfer ribonucleic acid and determination of its absolute configuration” Makoto Funamizu et al. J. Am. Chem. Soc. 1971 DOI: 10.1021/ja00753a080

[13] キューオシンの全合成と立体配置の決定

“Total synthesis of optically pure nucleoside Q. Determination of absolute configuration of natural nucleoside Q” T Ohgi et al. J. Am. Chem. Soc. 1977 DOI: 10.1021/ja00507a032

[14] ヒ素環境に生育するGFAJ-1の細胞からDNAにヒ素は検出されなかった

“Absence of Detectable Arsenate in DNA from Arsenate-Grown GFAJ-1 Cells” Marshall Louis Reaves et al. Science 2012 DOI: 10.1126/science.1219861

[15] GFAJ-1はヒ素耐性であるがリン依存の生命である

“GFAJ-1 Is an Arsenate-Resistant, Phosphate-Dependent Organism” Tobias J. Erb et al. Science 2012 DOI: 10.1126/science.1218455

[16] 細菌に存在する硫黄入りのDNAの化学構造

“Phosphorothioation of DNA in bacteria by dnd genes” Lianrong Wang et al. Nature Chemical Biology 2007 DOI: 10.1038/nchembio.2007.39

 

関連書籍

[amazonjs asin=”4106102323″ locale=”JP” title=”脱DNA宣言―新しい生命観へ向けて (新潮新書)”][amazonjs asin=”4000074938″ locale=”JP” title=”DNAロボット―生命のしかけで創る分子機械 (岩波科学ライブラリー)”]

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. プロドラッグの話
  2. 世界の化学企業いくつ知っていますか?
  3. 半導体・リチウムイオン電池にも!マイクロ波がもたらすプロセス改善…
  4. 1,2-還元と1,4-還元
  5. 化学系ブログのインパクトファクター
  6. 【Vol.1】研究室ってどんな設備があるの? 〜ロータリーエバポ…
  7. モノクローナル抗体を用いた人工金属酵素によるエナンチオ選択的フリ…
  8. Ming Yang教授の講演を聴講してみた

注目情報

ピックアップ記事

  1. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る
  2. 可視光酸化還元触媒 Visible Light Photoredox Catalyst
  3. ピナー反応 Pinner Reaction
  4. アウグスト・ホルストマン  熱力学と化学熱力学の架け橋
  5. 第468回生存圏シンポジウム「CNFとキチンNF 夢と現実、そしてこれから」
  6. 【3月開催】第六回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の架橋剤としての利用-有機溶剤系での利用-
  7. 鉄触媒を用いたテトラゾロピリジンのC(sp3)–Hアミノ化反応
  8. 有機合成化学協会誌2024年7月号:イミン類縁体・縮環アズレン・C–O結合ホモリシス・ハロカルビン・触媒的バイオマス分解
  9. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー
  10. 三菱化学の合弁計画、中国政府が認可・330億円投資へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

小松 徹 Tohru Komatsu

小松 徹(こまつ とおる、19xx年xx月xx日-)は、日本の化学者である。東京大学大学院薬学系研究…

化学CMアップデート

いろいろ忙しくてケムステからほぼ一年離れておりましたが、少しだけ復活しました。その復活第一弾は化学企…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP