[スポンサーリンク]

化学者のつぶやき

自在に分解できるプラスチック:ポリフタルアルデヒド

[スポンサーリンク]

 

ポリオレフィンやポリエステルといったプラスチックは安定性が非常に高いため、使い捨て容器やPETボトルなどとして幅広く利用されています(図は文献2より引用)。しかし、「安定性が高い」ということを言い換えれば「分解されにくい」ということになります。そのため、自然界に残存したプラスチックが環境汚染の原因となったり、リサイクルしにくかったりといった欠点があります。

しかし、しかし。化学の力は、「自在に分解できる高分子」といったちょっと変わったプラスチック=ポリフタルアルデヒド=Poly(phthalaldehyde)を実現してしまうのです。今回は、そんなポリフタルアルデヒドに関する最近の論文をご紹介します。

[1] Reproducible and Scalable Synthesis of End-Cap-Functionalized Depolymerizable Poly(phthalaldehydes)
DiLauro, A. M.; Robbins, J. S.; Phillips, S. T.*
Macromolecules 2013, 46, 2963-2968. DOI: 10.1021/ma4001594

[2] Stimuli-Responsive Core-Shell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane
DiLauro, A. M.; Abbaspourrad, A.; Weitz, D. A.; Phillips, S. T.*
Macromolecules 2013, 46, 3309-3313. DOI: 10.1021/ma400456p

ポリフタルアルデヒドは、酸や熱で分解する高分子であるため、リソグラフィーなどに利用されていましたが、高温にさらさないと分解しないなど、利用が限定されていました。2010年、ペンシルベニア州立大学の Phillipsらはポリフタルアルデヒド末端の保護基を外すと同時に以下の図1のようにカスケード反応が起こり、ポリフタルアルデヒドが分解され原料のフタルアルデヒドへと戻る(解重合する)ことを報告しました[3]。この報告をもとに、ポリフタルアルデヒドの刺激応答性解重合を利用する研究が行われています。

 

PPA4.jpg

図1. ポリフタルアルデヒドの解重合機構

 

文献1では、アリルカーボネート末端をパラジウム触媒により溶液中で脱保護したところ、30分で完全に分解されてしまいました。また、固体状態であっても光により脱保護されるオルトニトロベンジル末端を導入したポリフタルアルデヒドのフィルムに、光照射を行ったところ、末端の脱保護によりフィルムがモノマーへと変換されました(図2, b→c→dまたはe→f→gの変化)。高分子末端の保護基を外すだけの小さな変化が高分子鎖全体の解重合という大きな変化を産み出す、ダイナミックな反応です。
PPA1.jpg

図2. 光によるオルトニトロベンジルの脱保護を利用した解重合(文献1より引用)

 

そんなポリフタルアルデヒドを殻としてカプセルを作成すれば、カプセルの選択的に崩壊させることができます。文献2では、Phillipsらはフッ素により脱保護されるシリル系保護基を導入したポリフタルアルデヒドを用いて、蛍光物質を内包したカプセルを作成しました。シリル系保護基を脱保護できるフッ化テトラ-n-ブチルアンモニウム(TBAF)水溶液にこのカプセルを加えたところ、カプセルの分解が始まり、カプセル内部の蛍光物質が流出して見えなくなっていく様子が観察されています(図3)。

 

PPA2.jpg

図3. マイクロカプセル外殻の解重合により、内部の蛍光物質が時間が経つにつれ消失していく様子 (文献2より引用)

 

このように、ポリフタルアルデヒドからフタルアルデヒドへの解重合を行うことで、原料の完全なリサイクルが可能となります。実際、きれいに解重合が進行しているようで回収したモノマーは再度重合に用いることもできたそうです。このような、特定の刺激に応答して分解する特性はセンサー・自己修復性材料・ドラッグデリバリーなどへの応用が期待されます(モノマーの毒性等問題もありますが)。

 

そして、ポリフタルアルデヒドに限らず、プラスチックリサイクルに関する研究は。現在最も精力的に取り組まれている分野の一つです。例えば解重合技術が進展して、家庭でプラスチックの完全なリサイクルが可能な未来、「この服はもう着ないから、お皿にしちゃお」…なんて未来はそう遠くないのかもしれません。

 

参考文献

[3] Seo, W.; Phillips, S. T. J. Am. Chem. Soc. 2010, 132, 9234−9235. DOI: 10.1021/ja104420k

 

関連リンク

The Phillips Group – Penn State University

 

関連書籍

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 除虫菊に含まれる生理活性成分の生合成酵素を単離
  2. 第2回慶應有機合成化学若手シンポジウム
  3. 金ナノクラスター表面の自己組織化単分子膜を利用したテトラセンの高…
  4. エステルからエステルをつくる
  5. 天然物の全合成研究ーChemical Times特集より
  6. 太陽光変換効率10%での人工光合成を達成
  7. Late-Stage C(sp3)-H活性化法でステープルペプチ…
  8. AIと融合するバイオテクノロジー|越境と共創がもたらす革新的シン…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ペプチド縮合を加速する生体模倣型有機触媒
  2. 【ジーシー】新卒採用情報(2025卒)
  3. 研究最前線講演会 ~化学系学生のための就職活動Kickoffイベント~
  4. 塩基と酸でヘテロ環サイズを”調節する”
  5. 光レドックス触媒反応 フォトリアクター Penn PhD Photoreactor M2をデモしてみた
  6. ロバート・バーグマン Robert G. Bergman
  7. 吉岡里帆さんが出演する企業ブランド広告の特設サイト「DIC岡里帆の研究室」をリニューアル
  8. 化学者のためのエレクトロニクス講座~化合物半導体編
  9. 細胞表面受容体の機能解析の新手法
  10. 宮田完ニ郎 Miyata Kanjiro

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

2つの結合回転を熱と光によって操る、ベンズアミド構造の新たな性質を発見

 第 608回のスポットライトリサーチは、北海道大学大学院 生命科学院 生命科学専攻 生命医…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP