[スポンサーリンク]

化学者のつぶやき

自在に分解できるプラスチック:ポリフタルアルデヒド

 

ポリオレフィンやポリエステルといったプラスチックは安定性が非常に高いため、使い捨て容器やPETボトルなどとして幅広く利用されています(図は文献2より引用)。しかし、「安定性が高い」ということを言い換えれば「分解されにくい」ということになります。そのため、自然界に残存したプラスチックが環境汚染の原因となったり、リサイクルしにくかったりといった欠点があります。

しかし、しかし。化学の力は、「自在に分解できる高分子」といったちょっと変わったプラスチック=ポリフタルアルデヒド=Poly(phthalaldehyde)を実現してしまうのです。今回は、そんなポリフタルアルデヒドに関する最近の論文をご紹介します。

[1] Reproducible and Scalable Synthesis of End-Cap-Functionalized Depolymerizable Poly(phthalaldehydes)
DiLauro, A. M.; Robbins, J. S.; Phillips, S. T.*
Macromolecules 2013, 46, 2963-2968. DOI: 10.1021/ma4001594

[2] Stimuli-Responsive Core-Shell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane
DiLauro, A. M.; Abbaspourrad, A.; Weitz, D. A.; Phillips, S. T.*
Macromolecules 2013, 46, 3309-3313. DOI: 10.1021/ma400456p

ポリフタルアルデヒドは、酸や熱で分解する高分子であるため、リソグラフィーなどに利用されていましたが、高温にさらさないと分解しないなど、利用が限定されていました。2010年、ペンシルベニア州立大学の Phillipsらはポリフタルアルデヒド末端の保護基を外すと同時に以下の図1のようにカスケード反応が起こり、ポリフタルアルデヒドが分解され原料のフタルアルデヒドへと戻る(解重合する)ことを報告しました[3]。この報告をもとに、ポリフタルアルデヒドの刺激応答性解重合を利用する研究が行われています。

 

PPA4.jpg

図1. ポリフタルアルデヒドの解重合機構

 

文献1では、アリルカーボネート末端をパラジウム触媒により溶液中で脱保護したところ、30分で完全に分解されてしまいました。また、固体状態であっても光により脱保護されるオルトニトロベンジル末端を導入したポリフタルアルデヒドのフィルムに、光照射を行ったところ、末端の脱保護によりフィルムがモノマーへと変換されました(図2, b→c→dまたはe→f→gの変化)。高分子末端の保護基を外すだけの小さな変化が高分子鎖全体の解重合という大きな変化を産み出す、ダイナミックな反応です。
PPA1.jpg

図2. 光によるオルトニトロベンジルの脱保護を利用した解重合(文献1より引用)

 

そんなポリフタルアルデヒドを殻としてカプセルを作成すれば、カプセルの選択的に崩壊させることができます。文献2では、Phillipsらはフッ素により脱保護されるシリル系保護基を導入したポリフタルアルデヒドを用いて、蛍光物質を内包したカプセルを作成しました。シリル系保護基を脱保護できるフッ化テトラ-n-ブチルアンモニウム(TBAF)水溶液にこのカプセルを加えたところ、カプセルの分解が始まり、カプセル内部の蛍光物質が流出して見えなくなっていく様子が観察されています(図3)。

 

PPA2.jpg

図3. マイクロカプセル外殻の解重合により、内部の蛍光物質が時間が経つにつれ消失していく様子 (文献2より引用)

 

このように、ポリフタルアルデヒドからフタルアルデヒドへの解重合を行うことで、原料の完全なリサイクルが可能となります。実際、きれいに解重合が進行しているようで回収したモノマーは再度重合に用いることもできたそうです。このような、特定の刺激に応答して分解する特性はセンサー・自己修復性材料・ドラッグデリバリーなどへの応用が期待されます(モノマーの毒性等問題もありますが)。

 

そして、ポリフタルアルデヒドに限らず、プラスチックリサイクルに関する研究は。現在最も精力的に取り組まれている分野の一つです。例えば解重合技術が進展して、家庭でプラスチックの完全なリサイクルが可能な未来、「この服はもう着ないから、お皿にしちゃお」…なんて未来はそう遠くないのかもしれません。

 

参考文献

[3] Seo, W.; Phillips, S. T. J. Am. Chem. Soc. 2010, 132, 9234−9235. DOI: 10.1021/ja104420k

 

関連リンク

The Phillips Group – Penn State University

 

関連書籍

The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 脱水素型クロスカップリング重合法の開発
  2. ESIPTを2回起こすESDPT分子
  3. Newton別冊「注目のスーパーマテリアル」が熱い!
  4. Kindle Paperwhiteで自炊教科書を読んでみた
  5. 乾燥剤の脱水能は?
  6. 被引用回数の多い科学論文top100
  7. 生合成を模倣した有機合成
  8. シンクロトロン放射光を用いたカップリング反応機構の解明

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2008年イグノーベル賞決定!
  2. 高電気伝導性を有する有機金属ポリイン単分子ワイヤーの開発
  3. Chemical Science誌 創刊!
  4. ハメット則
  5. 化学研究ライフハック:Twitter活用のためのテクニック
  6. アピオース apiose
  7. トリス(ペンタフルオロフェニル)ボラン : Tris(pentafluorophenyl)borane
  8. 反芳香族化合物を積層させ三次元的な芳香族性を発現
  9. 環境ストレスに応答する植物ホルモン
  10. 有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成

関連商品

注目情報

注目情報

最新記事

化合物の秤量

数mgを量り取るといったことは多くの化学系の研究者の皆様が日常的にされていることかと思います。しかし…

小スケールの反応で気をつけるべきこと

前回はスケールアップについて書いたので、今回は小スケールの反応での注意すべきことについてつらつらと書…

尿から薬?! ~意外な由来の医薬品~ その1

Tshozoです。今まで尿に焦点をあてた記事を数回書いてきたのですが、それを調べるうちに「1…

OPRD誌を日本プロセス化学会がジャック?

OPRD(Organic Process Research & Development)はJ…

ワークアップの悪夢

みなさま、4月も半分すぎ、新入生がラボに入ってきていると思います。そんな頃によく目にするのが、エマル…

単一分子の電界発光の機構を解明

第194回のスポットライトリサーチは、理化学研究所Kim表面界面科学研究室で研究員を務められていた、…

Chem-Station Twitter

PAGE TOP