[スポンサーリンク]

化学者のつぶやき

自在に分解できるプラスチック:ポリフタルアルデヒド

 

ポリオレフィンやポリエステルといったプラスチックは安定性が非常に高いため、使い捨て容器やPETボトルなどとして幅広く利用されています(図は文献2より引用)。しかし、「安定性が高い」ということを言い換えれば「分解されにくい」ということになります。そのため、自然界に残存したプラスチックが環境汚染の原因となったり、リサイクルしにくかったりといった欠点があります。

しかし、しかし。化学の力は、「自在に分解できる高分子」といったちょっと変わったプラスチック=ポリフタルアルデヒド=Poly(phthalaldehyde)を実現してしまうのです。今回は、そんなポリフタルアルデヒドに関する最近の論文をご紹介します。

[1] Reproducible and Scalable Synthesis of End-Cap-Functionalized Depolymerizable Poly(phthalaldehydes)
DiLauro, A. M.; Robbins, J. S.; Phillips, S. T.*
Macromolecules 2013, 46, 2963-2968. DOI: 10.1021/ma4001594

[2] Stimuli-Responsive Core-Shell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane
DiLauro, A. M.; Abbaspourrad, A.; Weitz, D. A.; Phillips, S. T.*
Macromolecules 2013, 46, 3309-3313. DOI: 10.1021/ma400456p

ポリフタルアルデヒドは、酸や熱で分解する高分子であるため、リソグラフィーなどに利用されていましたが、高温にさらさないと分解しないなど、利用が限定されていました。2010年、ペンシルベニア州立大学の Phillipsらはポリフタルアルデヒド末端の保護基を外すと同時に以下の図1のようにカスケード反応が起こり、ポリフタルアルデヒドが分解され原料のフタルアルデヒドへと戻る(解重合する)ことを報告しました[3]。この報告をもとに、ポリフタルアルデヒドの刺激応答性解重合を利用する研究が行われています。

 

PPA4.jpg

図1. ポリフタルアルデヒドの解重合機構

 

文献1では、アリルカーボネート末端をパラジウム触媒により溶液中で脱保護したところ、30分で完全に分解されてしまいました。また、固体状態であっても光により脱保護されるオルトニトロベンジル末端を導入したポリフタルアルデヒドのフィルムに、光照射を行ったところ、末端の脱保護によりフィルムがモノマーへと変換されました(図2, b→c→dまたはe→f→gの変化)。高分子末端の保護基を外すだけの小さな変化が高分子鎖全体の解重合という大きな変化を産み出す、ダイナミックな反応です。
PPA1.jpg

図2. 光によるオルトニトロベンジルの脱保護を利用した解重合(文献1より引用)

 

そんなポリフタルアルデヒドを殻としてカプセルを作成すれば、カプセルの選択的に崩壊させることができます。文献2では、Phillipsらはフッ素により脱保護されるシリル系保護基を導入したポリフタルアルデヒドを用いて、蛍光物質を内包したカプセルを作成しました。シリル系保護基を脱保護できるフッ化テトラ-n-ブチルアンモニウム(TBAF)水溶液にこのカプセルを加えたところ、カプセルの分解が始まり、カプセル内部の蛍光物質が流出して見えなくなっていく様子が観察されています(図3)。

 

PPA2.jpg

図3. マイクロカプセル外殻の解重合により、内部の蛍光物質が時間が経つにつれ消失していく様子 (文献2より引用)

 

このように、ポリフタルアルデヒドからフタルアルデヒドへの解重合を行うことで、原料の完全なリサイクルが可能となります。実際、きれいに解重合が進行しているようで回収したモノマーは再度重合に用いることもできたそうです。このような、特定の刺激に応答して分解する特性はセンサー・自己修復性材料・ドラッグデリバリーなどへの応用が期待されます(モノマーの毒性等問題もありますが)。

 

そして、ポリフタルアルデヒドに限らず、プラスチックリサイクルに関する研究は。現在最も精力的に取り組まれている分野の一つです。例えば解重合技術が進展して、家庭でプラスチックの完全なリサイクルが可能な未来、「この服はもう着ないから、お皿にしちゃお」…なんて未来はそう遠くないのかもしれません。

 

参考文献

[3] Seo, W.; Phillips, S. T. J. Am. Chem. Soc. 2010, 132, 9234−9235. DOI: 10.1021/ja104420k

 

関連リンク

The Phillips Group – Penn State University

 

関連書籍

The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 掃除してますか?FTIR-DRIFTチャンバー
  2. 酵素触媒によるアルケンのアンチマルコフニコフ酸化
  3. NMR Chemical Shifts ー溶媒のNMR論文より
  4. マンガン触媒による飽和炭化水素の直接アジド化
  5. 固体なのに動くシャトリング分子
  6. バイオタージ Isolera: フラッシュ自動精製装置がSPEE…
  7. 95%以上が水の素材:アクアマテリアル
  8. マタタビの有効成分のはなし

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ザック・ボール Zachary T. Ball
  2. ねじれがあるアミド
  3. 有機ナノチューブの新規合成法の開発
  4. 池田 菊苗 Kikunae Ikeda
  5. 陽電子放射断層撮影 Positron Emmision Tomography
  6. 高機能な導電性ポリマーの精密合成法の開発
  7. 名古屋市科学館で化学してみた
  8. Evonikとはどんな会社?
  9. コンプラナジンAの全合成
  10. 周期表を超えて~超原子の合成~

関連商品

注目情報

注目情報

最新記事

トヨタ、世界初「省ネオジム耐熱磁石」開発

トヨタは、今後急速な拡大が予想される電動車に搭載される高出力モーターなど様々なモーターに使用されるネ…

触媒のチカラで拓く位置選択的シクロプロパン合成

嵩高いコバルト錯体を触媒として用いた位置選択的Simmons–Smith型モノシクロプロパン化反応が…

「原子」が見えた! なんと一眼レフで撮影に成功

An Oxford University student who captured an image…

2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

2月も後半となり、3月1日の就活解禁に向けて、2019年卒業予定の学生のみなさんは、就活モードが本格…

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前…

化学探偵Mr.キュリー7

昨年3月からついに職業作家となった、化学小説家喜多喜久氏。その代表作である「化学探偵Mr.キュリー」…

Chem-Station Twitter

PAGE TOP