[スポンサーリンク]

化学者のつぶやき

ククルビットウリルのロタキサン形成でClick反応を加速する

[スポンサーリンク]

カリフォルニア大学バークリー校・Matthew B. Francisらは、ククルビット[6]ウリル(CB6)のロタキサン形成能を応用し、アジド-アルキン付加環化を加速させる手法を開発した。

“Cucurbit[6]uril-Promoted Click Chemistry for Protein Modification”
Finbloom, J. A.: Han, K.; Slack, C. C.; Furst, A. L.; Francis, M. B.* J. Am. Chem. Soc. 2017, 139, 9691-9697. DOI: 10.1021/jacs.7b05164

問題設定

タンパク質化学修飾は様々な応用が期待される方法論として注目を集めている。一般的には水系・中性近傍pH・低濃度での実施可能性および高い官能許容性が反応特性として求められる。
アジド-アルキン1,3-双極子付加環化(AAC)は上記要請を満たす反応として幅広く使われるが、反応加速目的で添加される銅触媒がタンパク機能を損なったりDNA損傷や細胞毒性を引き起こすため、多くの生物学的応用には不適となっている。改良法として銅フリー歪み促進型AAC反応(SPAAC)[1]が知られるが、こちらもシクロアルキン基質の不安定性、低水溶性、合成コストの高さなどが問題となっている。

技術や手法のキモ

ククルビット[n]ウリル(CBnは、密集カルボニル基がアンモニウムカチオンと静電相互作用・水素結合することで、特徴的なホスト―ゲスト化学挙動を示すことが知られている。


本論文ではCB6分子とジアミンユニットのロタキサン形成過程を介した反応加速によってこの問題の解決を目指している。すなわち、アジドおよびアルキン部位にアミン(生体適合系ではプロトン化されたアンモニウムカチオンとして存在)を連結させたCB6とのheteroternary複合体形成からの反応加速を意図した設計を施している。このようなAAC反応は1983年にMockらによって報告されており[2]、(プソイド)ロタキサン合成に使われた実績もある[3]。しかしながら生体共役反応として用いられた例はこれまでに存在しない。

主張の有効性検証

①反応条件の最適化

synthetic modularityのあるピペリジン骨格をアジド側リンカーとして選択。最適化用基質としてはタバコモザイクウィルスカプシド変異体(RR-TMV-T104K)を用いている。
RR-TMV-T104KをNHSエステル1(10eq)で処理すると、表面Lysが約60%収率で修飾されたTMV-pipN3が得られた。これを基質として用い、LC-MSモニタリングによってCB6-AACの条件検討を行なっている。

最適条件(プロパルギルアミン(10eq)、CB6(10eq)、BisTRISバッファ(50 mM、pH 6)、37℃、24h)では95%収率でClick反応成績体を与える。観測される生成物のMSピークにはCB6が含まれ、競合基質(スペルミン)を加えると一部のCB6が外れることから、プソイドロタキサン形成が示唆される。
CB6と相互作用するNa+, K+が高濃度で存在するホスフェートバッファ中でも、ある程度の効率で実施可能。アミンのプロトン化を担保できるpH6が好ましい。結合体の水溶性は極めて高い。

②タンパク質の修飾

NHSエステル1でリゾチームをアジド修飾し、アルキン-PEG連結体3a/3bを用いて実施。CB6共存下にピペリジンリンカー体3aと反応させる場合は+2~5mod体が34%で得られる。立体的に小さいグリシンリンカー体3bを用いると収率は98%にまで向上する。
同様のやり方で、TMVタンパク+ペプチド(70%収率)、リゾチーム+22bpDNA(50%収率)、RR-TMVタンパク+ドキソルビシン(99%収率)なども合成できる。
ドキソルビシン担持試薬7の場合は特別に反応性が高い(CB6は2当量でOK)。これは、ドキソルビシン自体もCB6と水素結合して遷移状態安定化に寄与するためだと考察されている。

アルキン側の一般性

③他のBioconjugationとの直交性

Cysマレイミド修飾法との直交性を示すべく、二種の蛍光分子(AlexaFluor488とAlexaFluor594)をRR-TMV(Cys123とLys104を追加導入している)に順番に結合させた。その結果、FRET挙動が観測された。このことから、両修飾法は直交的に使うことができる。

またCB6の特性上、アンモニウムカチオンが近傍にないと反応が促進されない。そこで窒素を持たないアルキルアジド修飾体TMV-N3をピペリジン修飾体TMV-pip-N3と1:1の量比で共存させ、CB6-Click反応を行なったところ、pip-N3体のみが反応してTMV-N3は残存した。続いて同反応系中にSPAAC反応を実施したところ、残されたTMV-N3が選択的に反応した。ただし歪みアルキンは両方に反応性を持つので、反応順序はこの通りでなくてはならない。

議論すべき点

  • 今回はLys修飾ののち後付けの形でデモしているが、NHS部分を変更すれば原理上どのようなアミノ酸残基でも標的にできる。
  • 後付け加速コンセプトとしては面白いが、アミノ酸反応剤と直接繋げてしまえばいいような気もする。この手法が活きてくるのは、果たしてどのような研究局面だろうか?
  • 反応部位周りの構造は最適化途上と述べられている。ドキソルビシンの例からも推測可能だが、リンカーからの水素結合の上手い関与がさらなる効率向上の鍵になるか。

次に読むべき論文は?

  • 次なる応用はin vivo targeting・in vivo反応だと思われる。SPAAC反応やテトラジンDiels-Alder反応系はそのような応用事例に実績をもつ[4]が、これらの反応と比べてどこまでの利点が出せるか?が鍵になるだろう。塩やアミンが大量に存在する細胞系・動物系で機能するか否か、多成分系に起因するエントロピー的不利を乗り越えられるか否か、は興味の持たれるところ。

参考文献

  1. Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130, 11486−11493. DOI: 10.1021/ja803086r
  2. (a) Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Manimaran, T. L. J. Org. Chem. 1983, 48, 3619−3620. DOI: 10.1021/jo00168a070 (b) Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Adhya, M. J. Org. Chem. 1989, 54, 5302−5308. DOI: 10.1021/jo00283a024 (c) Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Chem. Rev. 2015, 115, 12320−12406. DOI: 10.1021/acs.chemrev.5b00341
  3. (a) Angelos, S.; Yang, Y.-W.; Patel, K.; Stoddart, J. F.; Zink, J. I. Angew. Chem., Int. Ed. 2008, 47, 2222−2226. DOI: 10.1002/anie.200705211 (b) Hou, X.; Ke, C.; Fraser Stoddart, J. Chem. Soc. Rev. 2016, 45, 3766−3780. doi:10.1039/C6CS00055J
  4. (a) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Proc. Natl. Acad. Sci. USA 2007, 104, 16793. doi:10.1073/pnas.0707090104 (b) Rossin, R.; Verkerk, P. R.; van den Bosch, S. M.; Vulders, R. C. M.; Verel, I.; Lub, J.; Robillard, M. S. Angew. Chem. Int. Ed. 2010, 49, 3375. DOI: 10.1002/anie.200906294
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. [5+1]環化戦略による触媒的置換シクロヘキサン合成
  2. 特許の基礎知識(2)「発明」って何?
  3. ChemDrawの使い方【作図編⑤ : 反応機構 (後編)】
  4. t-ブチルリチウムの発火事故で学生が死亡
  5. ちっちゃい異性を好む不思議な生物の愛を仲立ちするフェロモン
  6. で、その研究はなんの役に立つの?
  7. アレーン類の直接的クロスカップリング
  8. ビジネスが科学を待っている ー「バイオ」と「脱炭素」ー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. エリック・フェレイラ Eric M. Ferreira
  2. ケトンを配向基として用いるsp3 C-Hフッ素化反応
  3. 第96回日本化学会付設展示会ケムステキャンペーン!Part III
  4. 化合物と結合したタンパク質の熱安定性変化をプロテオームワイドに解析
  5. りん酸2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチル : 2-(Methacryloyloxy)ethyl 2-(Trimethylammonio)ethyl Phosphate
  6. 室温で液状のフラーレン
  7. デヴィッド・ミルステイン David Milstein
  8. ニトロンの1,3-双極子付加環化 1,3-Dipolar Cycloaddition of Nitrone
  9. リサイクルが容易な新しいプラスチックを研究者が開発
  10. スイスでポスドクはいかが?

関連商品

注目情報

注目情報

最新記事

機械的力で Cu(I) 錯体の発光強度を制御する

第256回のスポットライトリサーチは、沖縄科学技術大学院大学(OIST)・錯体化学触媒ユニット 狩俣…

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

研究助成金&海外留学補助金募集:公益財団法人アステラス病態代謝研究会

令和2年度はじまりました。とはいってもほとんどの大学講義開始は延期、講義もオンライン化が進み、いつも…

ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基触媒の創製

第255回のスポットライトリサーチは、東北大学大学院理学研究科 化学専攻・石川 奨さんにお願いしまし…

天然物生合成経路および酵素反応機構の解析 –有機合成から生化学への挑戦–

ケムステ海外研究記の第 33 回はテキサス大学 Liu 研究室に留学されていた牛丸理一郎先生にお願い…

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

Chem-Station Twitter

PAGE TOP