[スポンサーリンク]

化学者のつぶやき

95%以上が水の素材:アクアマテリアル

[スポンサーリンク]

 

東京大学の相田卓三教授のグループから、組成の95%以上が水分でありながら、シリコンゴム程度の強度と自己修復性を合わせ持つハイドロゲルが発表されました。[1] その高含水率から「アクアマテリアル」と命名されています(写真は毎日新聞より)。

新聞各紙やYahoo!ニュースのトップにも取り上げられたので、そちらをご覧になった方も多いかもしれません。

これまでのハイドロゲルは、共有結合による架橋を利用しており、もろくて不透明なものでした。近年報告されている、層状粘土鉱物(クレイ)と高分子を用いたゲルは、クレイと水の存在下で高分子を合成して作成するために調製に手間がかかる上、実用レベルの強度、高含水率、自己修復性を獲得するには至っていません。

今回のアクアマテリアルは、超分子的なアプローチにより、水分含有率が95%以上のハイドロゲルでありながら簡便な作成・自己修復性・高強度を実現しています。

では、詳しいその原理を見てみましょう。

hydrogel3.jpg

図1. 両末端デンドロン化高分子 (以下、図は全て論文[1]から引用)

まず、用いられている材料は、水・層状粘土鉱物(クレイ)・ポリアクリル酸ナトリウム、両末端デンドロン化高分子です。それぞれの材料について少し説明します。

1. 層状粘土鉱物(クレイ)
ケイ酸やアルミナが層状に積み重なった構造を有する鉱物で、化粧品・シャンプー・吸湿剤などに用いられています。エッジ部分に正電荷を、それ以外は負電荷を有しています。

2. ポリアクリル酸ナトリウム
吸水性高分子として知られ、保冷剤や紙おむつだけでなく、増粘剤として食品添加物にも使われます。主鎖部分に負電荷を有しています。

3.両末端デンドロン化高分子
主鎖部分に水溶性で無害な高分子であるポリエチレングリコール(PEG)が用いられており、その末端には樹木状に分岐したデンドロン基としてグアニジウムカチオンが導入してあります。グアニジウムカチオンはアミノ酸のアルギニンに見られる構造で、強い塩基性を有しています。こちらは、図の通り両末端合わせて16もの正電荷を有しています。

 

hydrogel1.jpg

図2. アクアマテリアル作成手順

つまり、用いられている材料や構造は基本的に生体に安全で、身の回りに存在するものばかりです。

 

続いてアクアマテリアルの作成方法ですが、図2の通り単純なものとなっています。
a. まず水とクレイを混ぜます。
b. 続いてポリアクリル酸ナトリウムを加えると、ポリアクリル酸ナトリウムの負電荷とクレイのエッジ部分の正電荷が作用し合い、クレイの層状構造がはがれて分散します。
c. ここに両末端デンドロン化高分子を加えると、デンドロン化高分子末端の正電荷とクレイの負電荷が引き合い、ネットワークが形成されます。

このcのステップにおいては、ただちにネットワーク形成が進行するようで、TVニュースの映像では5秒程度で攪拌が止まるほどでした。

大体の組成は、水95%以上、クレイ2~5%、両末端デンドロン化高分子0.4%以下です。

正電荷を有するグアニジウムカチオンをデンドロンとして導入することで、その数を増やし、少ない高分子添加量で十分なネットワークを形成を達成しています。
これは、”‘molecular glue(分子の糊)”という相田教授のグループの研究内容[2]を応用したものです。
ここでは、グアニジウムカチオンが”糊”として働くわけです。

 

hydrogel2.jpg

図3. 自己修復した(a,b)、成形した(c)、有機溶媒に浸した(d)アクアマテリアル

では、その物性を見てみましょう。
さわり心地はグミキャンティーような感じだそうです。剛性(外からの力に対して変化しない強度)は0.5MPaと、同程度の水分量を有するこんにゃくや、他の自己修復性を有するゲルに比べ500倍の強度を発現しました。

また、このアクアマテリアルの三次元ネットワークは、非共有結合により形成されているため、一度結合が破壊されても接合させておくと再びネットワークが形成されます。そのため、切り口同士を接合すると、すぐに接着するなどの自己修復性を発現しました(図3.a-b)。

安定性も高く、pHは4~10、温度は80℃までの範囲で安定であることが確かめられています。(80℃以上ではクレイが沸騰石の働きをするため、水の蒸発が起きて気泡が生成していました。)
他にも、成形が可能(図3.c)で、他の超分子ハイドロゲルでは見られない、有機溶媒中での形体保持性も確認されています(図3.d)。

さらに、生理活性のあるタンパク質ミオグロビンを取り込んでも71%の活性を保持する(アクアマテリアル内部は「水」の環境に近い)ことまで示されています。

そのほとんどが水な上に様々な特性を併せ持つ夢のような素材ですが、今後の課題として、ハイドロゲルの作成手順は簡便なものの、その材料である両末端デンドロン化高分子を合成するために10ステップ以上の合成が必要となること、0℃以下/100℃以上では水が蒸発してしまい使えないこと(これはハイドロゲルである限り避けられない問題ですが…)、などが挙げられるのかなと思います。

ですが、この論文がアクアマテリアルの第一報です。
ニュースのインタビューで相田先生もおっしゃっていましたが、まだまだ改良の余地があるため、プラスチックの代替材料や医療材料などとして、様々な研究・改良がこれから報告されそうです。

   * * *

相田先生のグループは、超分子的なアプローチを中心としたナノマシンやナノ空間材料で有名ですが、未来を見据えた基礎的・挑戦的な研究だけでなく、今回のような実用的な研究も手掛けられています。

ホームページや論文での見事なグラフィックやメディアを通して、一般の方にも見事に研究内容をプレゼンしてされている研究者のお一人だな、と今回改めて感じました。

参考論文等

  1. Qigang Wang et al. Nature 2010, 463, 339-343. doi:10.1038/nature08693
  2. Kou Okuro et al. J. Am. Chem. Soc. 2009, 131, 1626-1627. doi:10.1021/ja800491v
  3.  科学技術振興機構報 第707号

 

外部リンク

Avatar photo

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 宇宙で結晶化!? 創薬研究を支援する結晶生成サービス「Kira…
  2. 軽くて強いだけじゃないナノマテリアル —セルロースナノファイバー…
  3. 300分の1を狙い撃つ~カチオン性ロジウム触媒による高選択的[2…
  4. 【速報】2010年ノーベル化学賞決定!『クロスカップリング反応』…
  5. SFTSのはなし ~マダニとその最新情報 後編~
  6. 夏休みの自由研究に最適!~家庭でできる化学実験7選~
  7. ベンジル位アセタールを選択的に酸素酸化する不均一系触媒
  8. 渡辺化学工業ってどんな会社?

注目情報

ピックアップ記事

  1. 人工DNAから医薬をつくる!
  2. ダイセルが開発した新しいカラム: DCpak PTZ
  3. ツヴァイフェル オレフィン化 Zweifel Olefination
  4. 超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-
  5. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  6. クリーギー グリコール酸化開裂 Criegee Glycol Oxidative Cleavage
  7. 架橋シラ-N-ヘテロ環合成の新手法
  8. ReadCubeを使い倒す!(2)~新着論文チェックにもReadCubeをフル活用!~
  9. マスクをいくつか試してみた
  10. 中谷宇吉郎 雪の科学館

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ

2024年10月9日、スウェーデン王立科学アカデミーは、2024年のノーベル化学賞を発表しました。今…

デミス・ハサビス Demis Hassabis

デミス・ハサビス(Demis Hassabis 1976年7月27日 北ロンドン生まれ) はイギリス…

【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

概要これまで化学は,解析と合成を両輪とし理論・実験を行き来しつつ発展し,さまざまな物質を提供…

有機合成化学協会誌2024年10月号:炭素-水素結合変換反応・脱芳香族的官能基化・ピクロトキサン型セスキテルペン・近赤外光反応制御・Benzimidazoline

有機合成化学協会が発行する有機合成化学協会誌、2024年10月号がオンライン公開されています。…

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP