[スポンサーリンク]

化学者のつぶやき

フェノールのC–O結合をぶった切る

 

化石燃料の枯渇が問題視される昨今、環境調和や再生可能エネルギーの観点からバイオマス燃料に注目が集まっています。しかしながら、バイオマス燃料の原料であるセルロースやリグニン(図1)は高度に酸化された物質群であるためにエネルギー変換効率が低いという問題があります。そこでより優れたバイオマス原料を利用するために、植物由来バイオマス原料の脱酸素型還元反応の開発が求められています。特に還元剤として水素分子を用いる手法(水素化分解)の開発はアトムエコノミーの観点からも特に重要視されています。

図1 リグニンの構造の一部

図1 リグニンの構造の一部

 

先日東京大学の野崎らによって、フェノール類などのアレノール(Ar–OH)およびアリールメチルエーテル(Ar–OMe)の触媒的水素化分解反応がNature Communicationに報告されていましたので、少し紹介したいと思います。

 

“Direct and selective hydrogenolysis of arenols and aryl methyl ethers”

Kusumoto, S.; Nozaki, S. Nature Commun. 2015, 6, 6296. DOI: 10.1038/ncomms7296

 

作業仮説をたてる

これまでにも遷移金属触媒によるアリールエーテルのC(sp2)–O結合開裂を伴う還元反応は数例報告されているものの、フェノールの脱OH型還元反応は報告例がありませんでした。

野崎らはシクロペンタジエノン-ルテニウム錯体(Shvo触媒[1])が、水素分子のヘテロリック開裂を促進することに着目し、図2に示す触媒サイクルで反応が進行すればフェノールの脱OH型還元反応が実現可能だという作業仮説を立てました。つまり、金属上のヒドリドと配位子上のプロトンが協奏的にフェノールと反応することで、フェノールのC(sp2)–OH結合開裂を伴う還元反応が進行しベンゼンと水が生成するという機構です。

また同様に、アリールエーテルもC(sp3)–OAr結合の開裂を伴うアレノール誘導体生成反応も進行すると考えました。

 

図2. Shvo触媒(左)と本反応の触媒サイクル設計 (右)

図2. Shvo触媒(左)と本反応の触媒サイクル設計 (右)

 

イリジウム錯体を用いたアレノール類の水素化分解

まず筆者らは基質にアレノール誘導体、還元剤として水素分子を用い、200 °C、20時間の反応条件で、5種類の触媒の反応性を調査しました。その結果、触媒A、Cを用いた際、アレノール誘導体の脱OH型還元反応が進行し、効率良くベンゼン誘導体に変換されることがわかりました。なお触媒Bを用いた場合、目的の生成物がほとんど得られなかったことから、本反応においてシクロペンタジエニル配位子のOH基が重要な役割を果たしていることが示唆されています(図3)。

図3. アレノール誘導体の水素化分解反応

図3. アレノール誘導体の水素化分解反応

 

本反応におけるアレノール誘導体の反応性は置換基の位置に大きく依存します。錯体C存在下、p-フェニルフェノールを反応に用いるとほぼ定量的にビフェニルが得られるのに対し、m-フェニルフェノールでは収率50%、o-フェニルフェノールでは収率14%に留まる。また、錯体Aと錯体Cを比較すると錯体Cの方が触媒活性は高く、ジヒドロキシナフタレンを反応に用いた場合(論文:Table 1, Entries 10-13)、錯体A存在下ではナフトールを主生成物として与える一方で、錯体C存在下ではナフタレンが主生成物で得られます。

 

イリジウム錯体を用いたアリールメチルエーテルの水素化分解

本触媒はC(sp2)–OH結合だけでなく、アリールメチルエーテルのC(sp3)–O結合開裂を促進し、アレノール誘導体を与えることがわかりました(図4)。また過反応が進行すると対応するベンゼン誘導体が生成します。例えばp-フェニルアニソールを用いた場合、対応するフェノール体が収率57%、フェニル体が収率20%で生成します。また芳香環上にメトキシ基、ヒドロキシ基、アルキル鎖上にカルボニル部位を有するバニリルアセトンを本反応に適用すると、環還元反応が進行してブチルシクロヘキサンが副生成物として生成するものの、目的の還元体(ブチルベンゼン、メチルインダン)が収率良く得られます。

 

図4. アリールメチルエーテル誘導体の水素化分解反応

図4. アリールメチルエーテル誘導体の水素化分解反応

推定反応機構

筆者らが想定している反応機構を以下に示します(図5)。イリジウム3価錯体1上のヒドロキシシクロペンタジエニルのOH部位とイリジウム上のヒドリドが、フェノールのOH基とそれぞれ相互作用し、中間体23を与えます。その後、イリジウム上のヒドリドがフェノールの OH基のイプソ位と相互作用した遷移状態4を経ます。続いて、形式的な還元的脱離によって、水とベンゼンが生成するともに、イリジウム1価が生成します。このイリジウム1価錯体が水素分子とフェノールのOH基を利用した形式的な酸化的付加することにより、イリジウム3価錯体(中間体2)を与えます。

 

図5. イリジウム触媒を用いたアレノール誘導体の水素化分解反応の推定反応機構

図5. イリジウム触媒を用いたアレノール誘導体の水素化分解反応の推定反応機構

 

最後に

今回野崎らは、独自に開発したイリジウム触媒を用いてアレノール誘導体のフリーのC(sp2)–OH結合切断を伴う水素還元反応を世界で初めて報告しました。冒頭に記載した、バイオマス原料を直接水素化分解する条件には程遠いかもしれません。また、未だ反応温度や時間など改善の余地は残るものの、「フェノールからベンゼンへの直接変換が実現した」というインパクトは大きく、学術的価値は高いと思います。実験的には、通常、”No reaction”で終わらせてしまいそうな反応を「水素下、溶媒無しで200度まで熱する」までの条件で反応させたことに脱帽です。ぜひ見習いたいところです。

今後、温和な条件で反応が進行するような新たな高活性触媒の登場など、実用面における更なる発展に期待したいと思います。

 

関連論文

 

外部リンク

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 自由の世界へようこそ
  2. 高分子を”見る” その1
  3. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体…
  4. スルホニルアミノ酸を含むペプチドフォルダマーの創製
  5. 2007年ノーベル化学賞『固体表面上の化学反応の研究』
  6. シグマアルドリッチ器具・消耗品大特価キャンペーン【2018年3月…
  7. 究極の黒を炭素材料で作る
  8. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Carl Boschの人生 その1
  2. ヘテロ環ビルディングブロックキャンペーン
  3. 田辺製薬と三菱ウェルファーマが10月1日に合併へ‐新社名は「田辺三菱製薬」
  4. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~
  5. 「パキシル」服用の自殺者増加 副作用の疑い
  6. ネオ元素周期表
  7. 伯東、高機能高分子材料「デンドリマー」、製造期間10分の1に
  8. Molecules That Changed the World
  9. アイルランドに行ってきた①
  10. ノーベル化学賞メダルと科学者の仕事

関連商品

注目情報

注目情報

最新記事

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

電子豊富芳香環に対する触媒的芳香族求核置換反応

2017年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触…

毛染めでのアレルギー大幅低減へ ~日華化学がヘアカラー用染料開発~

日華化学(本社福井県福井市、江守康昌社長)は、髪へのダメージや頭皮への刺激がなく、アレルギーのリスク…

スナップタグ SNAP-tag

スナップタグ(SNAP-tag)は、特定のタンパク質だけを化学標識したいときに、目印として融合発現さ…

フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(リベラリス)

シリカゲルクロマトグラフィーを機械にやっていただき時間や場所、溶媒などを削減できるフラッシュ自動精製…

“結び目”をストッパーに使ったロタキサンの形成

分子ノットの嵩高さを利用した新規ロタキサンを合成した。末端に分子ノットをストッパーとして形成すること…

Chem-Station Twitter

PAGE TOP