[スポンサーリンク]

化学者のつぶやき

フェノールのC–O結合をぶった切る

[スポンサーリンク]

 

化石燃料の枯渇が問題視される昨今、環境調和や再生可能エネルギーの観点からバイオマス燃料に注目が集まっています。しかしながら、バイオマス燃料の原料であるセルロースやリグニン(図1)は高度に酸化された物質群であるためにエネルギー変換効率が低いという問題があります。そこでより優れたバイオマス原料を利用するために、植物由来バイオマス原料の脱酸素型還元反応の開発が求められています。特に還元剤として水素分子を用いる手法(水素化分解)の開発はアトムエコノミーの観点からも特に重要視されています。

図1 リグニンの構造の一部

図1 リグニンの構造の一部

 

先日東京大学の野崎らによって、フェノール類などのアレノール(Ar–OH)およびアリールメチルエーテル(Ar–OMe)の触媒的水素化分解反応がNature Communicationに報告されていましたので、少し紹介したいと思います。

 

“Direct and selective hydrogenolysis of arenols and aryl methyl ethers”

Kusumoto, S.; Nozaki, S. Nature Commun. 2015, 6, 6296. DOI: 10.1038/ncomms7296

 

作業仮説をたてる

これまでにも遷移金属触媒によるアリールエーテルのC(sp2)–O結合開裂を伴う還元反応は数例報告されているものの、フェノールの脱OH型還元反応は報告例がありませんでした。

野崎らはシクロペンタジエノン-ルテニウム錯体(Shvo触媒[1])が、水素分子のヘテロリック開裂を促進することに着目し、図2に示す触媒サイクルで反応が進行すればフェノールの脱OH型還元反応が実現可能だという作業仮説を立てました。つまり、金属上のヒドリドと配位子上のプロトンが協奏的にフェノールと反応することで、フェノールのC(sp2)–OH結合開裂を伴う還元反応が進行しベンゼンと水が生成するという機構です。

また同様に、アリールエーテルもC(sp3)–OAr結合の開裂を伴うアレノール誘導体生成反応も進行すると考えました。

 

図2. Shvo触媒(左)と本反応の触媒サイクル設計 (右)

図2. Shvo触媒(左)と本反応の触媒サイクル設計 (右)

 

イリジウム錯体を用いたアレノール類の水素化分解

まず筆者らは基質にアレノール誘導体、還元剤として水素分子を用い、200 °C、20時間の反応条件で、5種類の触媒の反応性を調査しました。その結果、触媒A、Cを用いた際、アレノール誘導体の脱OH型還元反応が進行し、効率良くベンゼン誘導体に変換されることがわかりました。なお触媒Bを用いた場合、目的の生成物がほとんど得られなかったことから、本反応においてシクロペンタジエニル配位子のOH基が重要な役割を果たしていることが示唆されています(図3)。

図3. アレノール誘導体の水素化分解反応

図3. アレノール誘導体の水素化分解反応

 

本反応におけるアレノール誘導体の反応性は置換基の位置に大きく依存します。錯体C存在下、p-フェニルフェノールを反応に用いるとほぼ定量的にビフェニルが得られるのに対し、m-フェニルフェノールでは収率50%、o-フェニルフェノールでは収率14%に留まる。また、錯体Aと錯体Cを比較すると錯体Cの方が触媒活性は高く、ジヒドロキシナフタレンを反応に用いた場合(論文:Table 1, Entries 10-13)、錯体A存在下ではナフトールを主生成物として与える一方で、錯体C存在下ではナフタレンが主生成物で得られます。

 

イリジウム錯体を用いたアリールメチルエーテルの水素化分解

本触媒はC(sp2)–OH結合だけでなく、アリールメチルエーテルのC(sp3)–O結合開裂を促進し、アレノール誘導体を与えることがわかりました(図4)。また過反応が進行すると対応するベンゼン誘導体が生成します。例えばp-フェニルアニソールを用いた場合、対応するフェノール体が収率57%、フェニル体が収率20%で生成します。また芳香環上にメトキシ基、ヒドロキシ基、アルキル鎖上にカルボニル部位を有するバニリルアセトンを本反応に適用すると、環還元反応が進行してブチルシクロヘキサンが副生成物として生成するものの、目的の還元体(ブチルベンゼン、メチルインダン)が収率良く得られます。

 

図4. アリールメチルエーテル誘導体の水素化分解反応

図4. アリールメチルエーテル誘導体の水素化分解反応

推定反応機構

筆者らが想定している反応機構を以下に示します(図5)。イリジウム3価錯体1上のヒドロキシシクロペンタジエニルのOH部位とイリジウム上のヒドリドが、フェノールのOH基とそれぞれ相互作用し、中間体23を与えます。その後、イリジウム上のヒドリドがフェノールの OH基のイプソ位と相互作用した遷移状態4を経ます。続いて、形式的な還元的脱離によって、水とベンゼンが生成するともに、イリジウム1価が生成します。このイリジウム1価錯体が水素分子とフェノールのOH基を利用した形式的な酸化的付加することにより、イリジウム3価錯体(中間体2)を与えます。

 

図5. イリジウム触媒を用いたアレノール誘導体の水素化分解反応の推定反応機構

図5. イリジウム触媒を用いたアレノール誘導体の水素化分解反応の推定反応機構

 

最後に

今回野崎らは、独自に開発したイリジウム触媒を用いてアレノール誘導体のフリーのC(sp2)–OH結合切断を伴う水素還元反応を世界で初めて報告しました。冒頭に記載した、バイオマス原料を直接水素化分解する条件には程遠いかもしれません。また、未だ反応温度や時間など改善の余地は残るものの、「フェノールからベンゼンへの直接変換が実現した」というインパクトは大きく、学術的価値は高いと思います。実験的には、通常、”No reaction”で終わらせてしまいそうな反応を「水素下、溶媒無しで200度まで熱する」までの条件で反応させたことに脱帽です。ぜひ見習いたいところです。

今後、温和な条件で反応が進行するような新たな高活性触媒の登場など、実用面における更なる発展に期待したいと思います。

 

関連論文

 

外部リンク

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. ジアゾニウム塩が開始剤と捕捉剤を“兼務”する
  2. ゲノム編集CRISPRに新たな進歩!トランスポゾンを用いた遺伝子…
  3. ADC薬基礎編: 着想の歴史的背景と小分子薬・抗体薬との比較
  4. 加熱✕情熱!マイクロ波合成装置「ミューリアクター」四国計測工業
  5. イオンの出入りを制御するキャップ付き分子容器の開発
  6. 未来社会創造事業
  7. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  8. 2007年度ノーベル化学賞を予想!(2)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 富山化の認知症薬が米でフェーズ1入り
  2. REACH/RoHS関連法案の最新動向【終了】
  3. ビオチン標識 biotin label
  4. アルキンの水和反応 Hydration of Alkyne
  5. 細胞を模倣したコンピューター制御可能なリアクター
  6. FM-AFMが実現!”溶ける”を原子レベルで直接観察
  7. 技術者・研究者のためのプレゼンテーション入門
  8. Whitesides’ Group: Writing a paper
  9. アジフェーズ法 AJIPHASE Method
  10. ビニルシクロプロパン転位 Vinylcyclopropane Rearrangement

関連商品

注目情報

注目情報

最新記事

「日産化学」ってどんな会社?

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギルオキシム・塩メタセシス反応・架橋型人工核酸・環状ポリアリレン・1,3-双極子付加環化反応

有機合成化学協会が発行する有機合成化学協会誌、2019年10月号がオンライン公開されました。…

有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リケラボコラボレーション)

以前お知らせしたとおり理系の理想の働き方を考える研究所「リケラボ」とコラボレーションして、特集記事を…

2019年ノーベル化学賞は「リチウムイオン電池」に!

スウェーデン王立科学アカデミーは9日、2019年のノーベル化学賞を、リチウムイオン電池を開発した旭化…

マテリアルズインフォマティクスでリチウムイオン電池の有機電極材料を探索する

第223回のスポットライトリサーチは、沼澤 博道さんにお願い致しました(トップ画像は論文から出典)。…

米陸軍に化学薬品検出スプレーを納入へ

米センサー・システムのフリアーシステムズは、化学兵器として使用されるマスタードガスなどを検出するスプ…

Chem-Station Twitter

PAGE TOP