[スポンサーリンク]

化学者のつぶやき

フェノールのC–O結合をぶった切る

[スポンサーリンク]

 

化石燃料の枯渇が問題視される昨今、環境調和や再生可能エネルギーの観点からバイオマス燃料に注目が集まっています。しかしながら、バイオマス燃料の原料であるセルロースやリグニン(図1)は高度に酸化された物質群であるためにエネルギー変換効率が低いという問題があります。そこでより優れたバイオマス原料を利用するために、植物由来バイオマス原料の脱酸素型還元反応の開発が求められています。特に還元剤として水素分子を用いる手法(水素化分解)の開発はアトムエコノミーの観点からも特に重要視されています。

図1 リグニンの構造の一部

図1 リグニンの構造の一部

 

先日東京大学の野崎らによって、フェノール類などのアレノール(Ar–OH)およびアリールメチルエーテル(Ar–OMe)の触媒的水素化分解反応がNature Communicationに報告されていましたので、少し紹介したいと思います。

 

“Direct and selective hydrogenolysis of arenols and aryl methyl ethers”

Kusumoto, S.; Nozaki, S. Nature Commun. 2015, 6, 6296. DOI: 10.1038/ncomms7296

 

作業仮説をたてる

これまでにも遷移金属触媒によるアリールエーテルのC(sp2)–O結合開裂を伴う還元反応は数例報告されているものの、フェノールの脱OH型還元反応は報告例がありませんでした。

野崎らはシクロペンタジエノン-ルテニウム錯体(Shvo触媒[1])が、水素分子のヘテロリック開裂を促進することに着目し、図2に示す触媒サイクルで反応が進行すればフェノールの脱OH型還元反応が実現可能だという作業仮説を立てました。つまり、金属上のヒドリドと配位子上のプロトンが協奏的にフェノールと反応することで、フェノールのC(sp2)–OH結合開裂を伴う還元反応が進行しベンゼンと水が生成するという機構です。

また同様に、アリールエーテルもC(sp3)–OAr結合の開裂を伴うアレノール誘導体生成反応も進行すると考えました。

 

図2. Shvo触媒(左)と本反応の触媒サイクル設計 (右)

図2. Shvo触媒(左)と本反応の触媒サイクル設計 (右)

 

イリジウム錯体を用いたアレノール類の水素化分解

まず筆者らは基質にアレノール誘導体、還元剤として水素分子を用い、200 °C、20時間の反応条件で、5種類の触媒の反応性を調査しました。その結果、触媒A、Cを用いた際、アレノール誘導体の脱OH型還元反応が進行し、効率良くベンゼン誘導体に変換されることがわかりました。なお触媒Bを用いた場合、目的の生成物がほとんど得られなかったことから、本反応においてシクロペンタジエニル配位子のOH基が重要な役割を果たしていることが示唆されています(図3)。

図3. アレノール誘導体の水素化分解反応

図3. アレノール誘導体の水素化分解反応

 

本反応におけるアレノール誘導体の反応性は置換基の位置に大きく依存します。錯体C存在下、p-フェニルフェノールを反応に用いるとほぼ定量的にビフェニルが得られるのに対し、m-フェニルフェノールでは収率50%、o-フェニルフェノールでは収率14%に留まる。また、錯体Aと錯体Cを比較すると錯体Cの方が触媒活性は高く、ジヒドロキシナフタレンを反応に用いた場合(論文:Table 1, Entries 10-13)、錯体A存在下ではナフトールを主生成物として与える一方で、錯体C存在下ではナフタレンが主生成物で得られます。

 

イリジウム錯体を用いたアリールメチルエーテルの水素化分解

本触媒はC(sp2)–OH結合だけでなく、アリールメチルエーテルのC(sp3)–O結合開裂を促進し、アレノール誘導体を与えることがわかりました(図4)。また過反応が進行すると対応するベンゼン誘導体が生成します。例えばp-フェニルアニソールを用いた場合、対応するフェノール体が収率57%、フェニル体が収率20%で生成します。また芳香環上にメトキシ基、ヒドロキシ基、アルキル鎖上にカルボニル部位を有するバニリルアセトンを本反応に適用すると、環還元反応が進行してブチルシクロヘキサンが副生成物として生成するものの、目的の還元体(ブチルベンゼン、メチルインダン)が収率良く得られます。

 

図4. アリールメチルエーテル誘導体の水素化分解反応

図4. アリールメチルエーテル誘導体の水素化分解反応

推定反応機構

筆者らが想定している反応機構を以下に示します(図5)。イリジウム3価錯体1上のヒドロキシシクロペンタジエニルのOH部位とイリジウム上のヒドリドが、フェノールのOH基とそれぞれ相互作用し、中間体23を与えます。その後、イリジウム上のヒドリドがフェノールの OH基のイプソ位と相互作用した遷移状態4を経ます。続いて、形式的な還元的脱離によって、水とベンゼンが生成するともに、イリジウム1価が生成します。このイリジウム1価錯体が水素分子とフェノールのOH基を利用した形式的な酸化的付加することにより、イリジウム3価錯体(中間体2)を与えます。

 

図5. イリジウム触媒を用いたアレノール誘導体の水素化分解反応の推定反応機構

図5. イリジウム触媒を用いたアレノール誘導体の水素化分解反応の推定反応機構

 

最後に

今回野崎らは、独自に開発したイリジウム触媒を用いてアレノール誘導体のフリーのC(sp2)–OH結合切断を伴う水素還元反応を世界で初めて報告しました。冒頭に記載した、バイオマス原料を直接水素化分解する条件には程遠いかもしれません。また、未だ反応温度や時間など改善の余地は残るものの、「フェノールからベンゼンへの直接変換が実現した」というインパクトは大きく、学術的価値は高いと思います。実験的には、通常、”No reaction”で終わらせてしまいそうな反応を「水素下、溶媒無しで200度まで熱する」までの条件で反応させたことに脱帽です。ぜひ見習いたいところです。

今後、温和な条件で反応が進行するような新たな高活性触媒の登場など、実用面における更なる発展に期待したいと思います。

 

関連論文

 

外部リンク

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. カイコが紡ぐクモの糸
  2. パーソナライズド・エナジー構想
  3. #おうち時間を充実させるオンライン講義紹介 ーナノテクー
  4. 量子力学が予言した化学反応理論を実験で証明する
  5. 投票!2017年ノーベル化学賞は誰の手に!?
  6. どっちをつかう?:adequateとappropriate
  7. 分子の磁石 “化学コンパス” ~渡り鳥の…
  8. エチレンを離して!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高校生・学部生必見?!大学学術ランキング!!
  2. 科学を魅せるーサイエンスビジュアリゼーションー比留川治子さん
  3. 核酸合成試薬(ホスホロアミダイト法)
  4. 独バイエル、2004年は3部門全てで増収となった可能性=CEO
  5. フィンケルシュタイン反応 Finkelstein Reaction
  6. 超強塩基触媒によるスチレンのアルコール付加反応
  7. 下村 脩 Osamu Shimomura
  8. ノーベル化学賞受賞者が講演 3月1日、徳島文理大学
  9. Handbook of Reagents for Organic Synthesis: Reagents for Heteroarene Functionalization
  10. リチウムイオン電池製造の勘どころ【終了】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年4月
« 3月   5月 »
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

その病気、市販薬で治せます

(さらに…)…

チェーンウォーキングを活用し、ホウ素2つを離れた位置へ導入する!

第350回のスポットライトリサーチは、慶應義塾大学大学院理工学研究科 博士課程 2 …

ヘテロ環、光当てたら、減ってる環

種々の生物活性物質に適用可能な飽和複素環の環縮小反応が開発された。可視光の照射のみで飽和複素環のヘテ…

化学者のためのエレクトロニクス講座~電解金めっき編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

モータースポーツで盛り上がるカーボンニュートラル

11月13日、マツダは岡山県の岡山国際サーキットで開催されるスーパー耐久シリーズ2021 Power…

化学反応を自動サンプリング! EasySampler 1210

自動でサンプリングして化学反応を追跡できる装置 EasySampler 1210…

化学者のためのエレクトロニクス講座~めっきの原理編~

このシリーズ、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDな…

常温・常圧で二酸化炭素から多孔性材料をつくる

第349回のスポットライトリサーチは、京都大学工学研究科堀毛研究室で2020年に博士号を取得され、現…

第464回生存圏シンポジウム バイオナノマテリアルシンポジウム2021 - アカデミアからの発信 –

温室効果ガスゼロエミッションは、あらゆる分野において人類が生存を賭けて取り組む喫緊の課題です。大気中…

宇宙に輝く「鄒承魯星」、中国の生物化学の先駆者が小惑星の名前に

「鄒承魯小惑星」の命名セレモニーが2日、中国科学院生物物理研究所で行われた。中央テレビニュースが伝え…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP