[スポンサーリンク]

化学者のつぶやき

ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造体 編~

[スポンサーリンク]

前回の記事では「DNA折り紙とはなんぞや?」について解説しました[1]。

報告当初[2]から込み入った構造が作れるとして話題を呼びましたが、技術がさらに進んだ現在、どこまで複雑なものが作れるようになっているのでしょうか?

DNA折り紙のサイズ(~100 nm)は、使える長鎖DNAの長さ(~7000塩基)でほぼ規定されます。菌に作らせる事情ゆえ、どうしても上限があるのです(もちろんこの上限を克服しようとする研究もあるようです)。

そこで現在では、複数のDNA折り紙タイルを整列させる方法によって、より巨大な構造体へとアプローチする研究が進んでいます。

たとえば相補的な凹凸構造を有するDNAタイルをデザインしてやると、複数のタイルがジグソーパズルのように寄せ集まり、かなり大きな構造体(~300nmサイズ)が得られます。

DNAorigami_2_1

また鋳型となるフレームとDNA折り紙タイルを組み合わせることで、さらに複雑な構造パターンも作りあげることができます。

DNAorigami_2_2

別のアプローチとしては、折り紙タイルに「住所」を持たせうる性質を利用してDNA以外の化合物を結合させる、「ハイブリッド素材化」も試みられています。

たとえばトライアングル状のDNA折り紙に金ナノロッド/粒子や量子ドットを配列させたり、格子構造の交点にタンパク質(ストレプトアビジン)を寄せ集めたり・・・といった研究が既に報告されています。

DNAorigami_2_3

一つ遊び心あふれる研究例をご紹介しましょう。さながら“DNA福笑い”とでも呼びましょうか(笑)

DNAorigami_2_4

個々のタンパク質を見分ける”タグ”を目鼻の位置にセットアップしておき、望みの位置に好きなタンパク質を担持出来るというデモです。タイルの表・裏を区別して結合させることも出来るようです[3]。

 

以上の例は全て平面(2D)の構造体ですが、近年ではより難度の高い立体(3D)構造へもアプローチが進んでいます。これは次回にでも紹介してみたいと思います。

(※図は論文[1],[3]より引用)

 

関連文献

[1] (a) “DNA origami technology for biomaterials applications” Endo, M.; Yang, Y.; Sugiyama, H. Biomater. Sci. 2012, 1, 347. DOI: 10.1039/c2bm00154c (b) “Structural DNA Nanotechnology: State of the Art and Future Perspective” Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. J. Am. Chem. Soc. 2014, doi:10.1021/ja505101a
[2] “Folding DNA to create nanoscale shapes and patterns” Rothemund, P. W. K. Nature 2006, 440, 297. doi:10.1038/nature04586
[3] “Orthogonal Protein Decoration of DNA Origami” Niemeyer, C. M. et al. Angew. Chem. Int. Ed. 2010, 49, 9378. DOI: 10.1002/anie.201005931

 

関連書籍

 

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 高分子討論会:ソーラーセイルIKAROS
  2. 有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Ald…
  3. 化学の力で迷路を解く!
  4. 第16回次世代を担う有機化学シンポジウム
  5. 比色法の化学(後編)
  6. 特長のある豊富な設備:ライトケミカル工業
  7. 波動-粒子二重性 Wave-Particle Duality: …
  8. 細孔内単分子ポリシラン鎖の特性解明

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ノーベル化学賞受賞者が講演 3月1日、徳島文理大学
  2. アルケンとニトリルを相互交換する
  3. エッシェンモーザーメチレン化 Eschenmoser Methylenation
  4. マクファディン・スティーヴンス反応 McFadyen-Stevens Reaction
  5. 親水性ひも状分子を疎水性空間に取り込むナノカプセル
  6. 化学Webギャラリー@Flickr 【Part1】
  7. ラボからのスケールアップ再現性手法【終了】
  8. 研究倫理問題について学んでおこう
  9. ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造体 編~
  10. 元素生活 完全版

関連商品

注目情報

注目情報

最新記事

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2020年1月より、数々のヒット作に出演し、…

tRNAの新たな役割:大豆と微生物のコミュニケーション

畑に生えている大豆の根っこを抜いてみると、丸い粒みたいなものがたくさんできています。根粒(こんりゅう…

第46回―「分子レベルの情報操作を目指す」Howard Colquhoun教授

第46回の海外化学者インタビューは、ハワード・コルクホーン教授です。英国レディング大学の化学科に所属…

Chem-Station Twitter

PAGE TOP