[スポンサーリンク]

化学者のつぶやき

ここまでできる!?「DNA折り紙」の最先端 ① ~入門編~

[スポンサーリンク]

 

「DNA折り紙」という技術をご存じですか? 一言で述べるなら、DNA鎖を折り曲げ、ナノスケールの構造体を作り上げる技術です。

2006年の報告以来、大きな夢を感じさせるアウトプットが続々と報告されているのですが、その一方でビジュアル的にとても面白いという希有な特徴も持ち合わせています。我が国の伝統芸能とは元来無関係なはずですが、美的側面はまさに「Origami」の名を冠するにふさわしいものです。

この未来的技術・「DNA折り紙」の進展について、総説[1]を参考に数回にわたって紹介していきたいと思います。

まずは「DNA折り紙とはなんぞや?」というお話から。

DNA分子は皆さんもご存じの通り、決まった相手とだけ二重らせんを組む性質があります。この現象を応用してナノ構造体を作ろうとする研究は、Nadrian C. Seemanという研究者によって開拓されました。

初期に作られたもっとも有名な一つが、Seemanの立方体と呼ばれる構造体です。下図に示す通り、選択的のり付け部位をもったDNAモチーフを設計し、それらを頂点として互いに組み合わせて立方体を組みあげます。

このように、彼は特定のDNAモチーフを設計しながら様々な構造体を作り上げ、「構造DNAナノテクノロジー」と呼ばれる分野の基礎を築きあげました。[2]

DNAOrigami_3

(画像:論文[2]より)

その後しばらくの年月を経た2006年、「DNA折り紙」技術の電撃的な報告がなされました[3]。カリフォルニア工科大学の若き研究者・Paul Rothemundによるものです。

DNA折り紙法の特徴は長い一本鎖DNA(~7000塩基)とstaple strand(短い相補的DNA鎖、多くは32塩基)を組み合わせる工夫にあります。これらを混ぜて加熱・冷却することで長鎖DNAを折りたたませ、望みの構造に落ち着かせます。根底を流れる考え方はSeemanの方法と共通ですが、大きなサイズの構造体が信頼性高く作れる(~100nmサイズ)ことに加え、特定の「住所」を持つstaple strandに好みの機能を付与できることも際だった特徴です。

DNAOrigami_2

(画像:論文[1]より)

Rothemundはこの技術のデモンストレーションとして、複雑な構造をもつ平面(2D)構造体を多数作り上げてみせました。中でも目を引く有名なものは、ナノサイズのスマイルマークや世界地図でしょう。こんなものがDNAを混ぜるだけで自動的に組み上がるのですから、驚くほかありません。もっと見たい方は、関連動画のTEDプレゼンをご覧ください。

 

DNAOrigami_1

(画像:論文[1]より)

まだ新しい技術なのですが、現在までの発展は実に目覚ましいものがあります。Rothemundの成し遂げた2D構造に加え、最近では立体(3D)構造も構築できるようになっています。さらにはスイッチ分子によって構造変化を起こすなど、機能を持つ構造体も登場しています。

ビジュアル要素だけでもこの上なく楽しい技術ですが、具体的にどんな使われ方をしていくと思いますか?まだまだ開拓余地の多い技術ですから、科学者の果てなき想像力と夢が応用の地平を拓くといえます。アイデア次第では、読者の皆さんでも優れたアウトプットが出せるかも!?

次回からは、そんな最先端研究を少しずつ紹介していきたいと思います。

 

関連動画

関連文献

[1] “DNA origami technology for biomaterials applications” Endo, M.; Yang, Y.; Sugiyama, H. Biomater. Sci. 20121, 347. DOI:10.1039/c2bm00154c
[2] “DNA in a material world” Seeman, N. C. Nature 2003421, 427. doi:10.1038/nature01406
[3] “Folding DNA to create nanoscale shapes and patterns” Rothemund, P. W. K. Nature 2006440, 297. doi:10.1038/nature04586

 

関連書籍

[amazonjs asin=”4062574721″ locale=”JP” title=”DNA (上)―二重らせんの発見からヒトゲノム計画まで (ブルーバックス)”][amazonjs asin=”4062165341″ locale=”JP” title=”生物化するコンピュータ”][amazonjs asin=”B095P61D8L” locale=”JP” title=”DNA origami入門 ―基礎から学ぶDNAナノ構造体の設計技法―”]

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 孫悟飯のお仕事は?
  2. SlideShareで見る美麗な化学プレゼンテーション
  3. PACIFICHEM2010に参加してきました!③
  4. ローカル環境でPDFを作成する(Windows版)
  5. 原子状炭素等価体を利用してα,β-不飽和アミドに一炭素挿入する新…
  6. 研究者よ景色を描け!
  7. “結び目”をストッパーに使ったロタキサンの形成
  8. ヒドロアシル化界のドンによる巧妙なジアステレオ選択性制御

注目情報

ピックアップ記事

  1. 微生物の電気でリビングラジカル重合
  2. 有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン
  3. シクロプロパンの数珠つなぎ
  4. フロー合成と電解合成の最先端、 そしてデジタル有機合成への展開
  5. 根岸カルボメタル化 Negishi Carbometalation
  6. 高井・ロンバード反応 Takai-Lombardo Reaction
  7. 第七回 生命を化学する-非ワトソン・クリックの世界を覗く! ー杉本直己教授
  8. 忍者はお茶から毒をつくったのか
  9. 香料化学 – におい分子が作るかおりの世界
  10. 秋の味覚「ぎんなん」に含まれる化合物

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP