[スポンサーリンク]

化学者のつぶやき

フローシステムでペプチド合成を超高速化・自動化

[スポンサーリンク]

マサチューセッツ工科大学・Bradley L. Penteluteらは、ペプチド固相合成法とフロー合成法を組み合わせて、超高速・高収率でペプチドを自動合成できるシステムを開発した。1工程(アミノ酸活性化・縮合・脱保護・洗浄まで)あたりおよそ40秒で完了する。

“A fully automated flow-based approach for accelerated peptide synthesis”
Mijalis, A. J.; Thomas, D. A. III; Simon, M. D.; Adamo, A.; Beaumont, R.; Jensen, K. F.; Pentelute, B. L.* Nat. Chem. Biol. 2017, 13, 464–466. doi:10.1038/nchembio.2318

問題設定と解決した点

 ペプチドの固相合成法は高収率でペプチドを合成でき、精製も簡便であるが、伸長反応の工程に何時間もかかってしまう。固相合成のフロー系への応用は20年ほど前から取り組まれていたが、

  • 流路内で反応溶液を再循環させる必要がある
  • 反応にある程度時間を要するため、活性化されたアミノ酸がエピ化・分解してしまう
  • 高圧に耐えるレジンが必要

などの問題があった。

 著者らはこれらの問題の解決に取り組んでいたが[1]、温度・活性化時間・検出の十分なコントロールができず、マニュアル合成では1ステップ5分程度かかっていた。今回のシステムではこれを完全自動化し、1ステップ1分以内の反応を達成している。

技術や手法の肝

 フロー合成装置を使ったFmoc固相合成法の完全自動化により自在な温度調節が可能になった。縮合過程を90℃にまで昇温することで、反応時間のさらなる短縮を達成している。

装置が実際に動く様子はこちらの動画をご覧頂きたい。
 レジン反応直後のフローUV吸収(302 nm:Fmoc基の吸収)を常にモニターすることで、①反応剤・アミノ酸除去完了の確認 ②Fmoc脱保護完了の確認ができ、タイムラグ無しに次の反応に移ることができる。またFmoc基のUVピーク面積から、おおよそのカップリング収率も求めることができる。

最初の大きな山がFmocアミノ酸原料。後の小さな山が脱保護されたFmoc由来の廃棄物。吸収がなくなることで完了点が判断できる(論文より引用)

主張の有効性検証

 本法の利点は ①速い ②全自動 の2つに尽きる。しかも従来と同程度の収率でペプチドを得られる。バッチ合成と比しての優位性や速度メリットを実証すべく、いくつかのペプチド合成に応用している。

 たとえばGHRH(29残基)は40分で58%収率。バッチ合成(30時間)では 60%収率。インスリンβチェーン(30残基)は20分で53%収率。バッチ合成(30時間)では45%収率。


GHRHの合成品のHPLCチャート(上:自動フロー合成、下:バッチ合成)。フロー合成のほうが純度が良い。(論文より引用)

議論すべき点

  • 残基によってはエピ化が進行してしまう。たとえばエピ化しやすいシステインを含むトリペプチドを合成するとシステイン残基が3%エピ化する。もっとも、バッチで90秒活性化すると16.7%エピ化するので、時間短縮の効果は出ているようである。
  • レジンの量を減らすことにより、通常の固相合成法では反応が進行しにくい基質でも良好に伸長を行うことができる。
  • 大量の試薬・溶媒と高温を要するため、非常にコストがかかる。希少なアミノ酸を導入する場合は高濃度にして溶媒を減らすことで当量を抑えられるが、それでも6当量のアミノ酸が必要である。
  • 上記理由により、現状では大量合成は厳しい。とはいえ研究試薬用、生物活性確認用のスケール程度のペプチド合成には、非常に有用と考えられる。

参考文献

  1. Pentelute, B. L. et al. ChemBioChem 2014, 15, 713. DOI: 10.1002/cbic.201300796
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アニリン版クメン法
  2. ホウ素と窒素で何を運ぶ?
  3. 究極の黒を炭素材料で作る
  4. 触媒表面に吸着した分子の動きと分子変換過程を可視化~分子の動きが…
  5. 含ケイ素四員環 -その1-
  6. 糸状菌から新たなフラボノイド生合成システムを発見
  7. 『リンダウ・ノーベル賞受賞者会議』を知っていますか?
  8. 3Dプリンタとシェールガスとポリ乳酸と

注目情報

ピックアップ記事

  1. 化学に触れる学びのトレイン“愛称”募集
  2. EUのナノマテリアル監視機関が公式サイトをオープン
  3. 【動画】元素のうた―日本語バージョン
  4. Independence Day
  5. Pallambins A-Dの不斉全合成
  6. 安全なジアゾメタン原料
  7. リアル「ブレイキング・バッド」!薬物製造元教授を逮捕 中国
  8. スイスの博士課程ってどうなの?2〜ヨーロッパの博士課程に出願する〜
  9. クゥイリン・ディン Kui-Ling Ding
  10. クライゼン転位 Claisen Rearrangement

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

2024年度 第24回グリーン・サステイナブル ケミストリー賞 候補業績 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブル ケミストリー ネットワーク会議(略称: …

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

開催日時 2024.09.11 15:00-16:00 申込みはこちら開催概要持続可能な…

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP