[スポンサーリンク]

化学者のつぶやき

フローシステムでペプチド合成を超高速化・自動化

[スポンサーリンク]

マサチューセッツ工科大学・Bradley L. Penteluteらは、ペプチド固相合成法とフロー合成法を組み合わせて、超高速・高収率でペプチドを自動合成できるシステムを開発した。1工程(アミノ酸活性化・縮合・脱保護・洗浄まで)あたりおよそ40秒で完了する。

“A fully automated flow-based approach for accelerated peptide synthesis”
Mijalis, A. J.; Thomas, D. A. III; Simon, M. D.; Adamo, A.; Beaumont, R.; Jensen, K. F.; Pentelute, B. L.* Nat. Chem. Biol. 2017, 13, 464–466. doi:10.1038/nchembio.2318

問題設定と解決した点

 ペプチドの固相合成法は高収率でペプチドを合成でき、精製も簡便であるが、伸長反応の工程に何時間もかかってしまう。固相合成のフロー系への応用は20年ほど前から取り組まれていたが、

  • 流路内で反応溶液を再循環させる必要がある
  • 反応にある程度時間を要するため、活性化されたアミノ酸がエピ化・分解してしまう
  • 高圧に耐えるレジンが必要

などの問題があった。

 著者らはこれらの問題の解決に取り組んでいたが[1]、温度・活性化時間・検出の十分なコントロールができず、マニュアル合成では1ステップ5分程度かかっていた。今回のシステムではこれを完全自動化し、1ステップ1分以内の反応を達成している。

技術や手法の肝

 フロー合成装置を使ったFmoc固相合成法の完全自動化により自在な温度調節が可能になった。縮合過程を90℃にまで昇温することで、反応時間のさらなる短縮を達成している。

装置が実際に動く様子はこちらの動画をご覧頂きたい。
 レジン反応直後のフローUV吸収(302 nm:Fmoc基の吸収)を常にモニターすることで、①反応剤・アミノ酸除去完了の確認 ②Fmoc脱保護完了の確認ができ、タイムラグ無しに次の反応に移ることができる。またFmoc基のUVピーク面積から、おおよそのカップリング収率も求めることができる。

最初の大きな山がFmocアミノ酸原料。後の小さな山が脱保護されたFmoc由来の廃棄物。吸収がなくなることで完了点が判断できる(論文より引用)

主張の有効性検証

 本法の利点は ①速い ②全自動 の2つに尽きる。しかも従来と同程度の収率でペプチドを得られる。バッチ合成と比しての優位性や速度メリットを実証すべく、いくつかのペプチド合成に応用している。

 たとえばGHRH(29残基)は40分で58%収率。バッチ合成(30時間)では 60%収率。インスリンβチェーン(30残基)は20分で53%収率。バッチ合成(30時間)では45%収率。


GHRHの合成品のHPLCチャート(上:自動フロー合成、下:バッチ合成)。フロー合成のほうが純度が良い。(論文より引用)

議論すべき点

  • 残基によってはエピ化が進行してしまう。たとえばエピ化しやすいシステインを含むトリペプチドを合成するとシステイン残基が3%エピ化する。もっとも、バッチで90秒活性化すると16.7%エピ化するので、時間短縮の効果は出ているようである。
  • レジンの量を減らすことにより、通常の固相合成法では反応が進行しにくい基質でも良好に伸長を行うことができる。
  • 大量の試薬・溶媒と高温を要するため、非常にコストがかかる。希少なアミノ酸を導入する場合は高濃度にして溶媒を減らすことで当量を抑えられるが、それでも6当量のアミノ酸が必要である。
  • 上記理由により、現状では大量合成は厳しい。とはいえ研究試薬用、生物活性確認用のスケール程度のペプチド合成には、非常に有用と考えられる。

参考文献

  1. Pentelute, B. L. et al. ChemBioChem 2014, 15, 713. DOI: 10.1002/cbic.201300796
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 学生実験・いまむかし
  2. シグマアルドリッチ器具・消耗品大特価キャンペーン【2018年3月…
  3. 光C-Hザンチル化を起点とするLate-Stage変換法
  4. アンモニアを用いた環境調和型2級アミド合成
  5. 第464回生存圏シンポジウム バイオナノマテリアルシンポジウム2…
  6. 有機合成化学協会誌2021年2月号:デオキシプロピオナート構造・…
  7. 第25回ケムステVシンポ「データサイエンスが導く化学の最先端」を…
  8. 第六回ケムステVシンポ「高機能性金属錯体が拓く触媒科学」

注目情報

ピックアップ記事

  1. アルキンの水和反応 Hydration of Alkyne
  2. 全合成 total synthesis
  3. SNS予想で盛り上がれ!2020年ノーベル化学賞は誰の手に?
  4. 米国、カナダにおけるシェール・ガスによるLNGプロジェクトの事業機会【終了】
  5. ブドウ糖で聴くウォークマン? バイオ電池をソニーが開発
  6. アラスカのカブトムシは「分子の防寒コート」で身を守る
  7. ヤマハ発動機、サプリメントメーカーなど向けにアスタキサンチンの原料を供給するビジネスを開始
  8. パーソナライズド・エナジー構想
  9. 製薬業界の研究開発費、増加へ
  10. 正立方体から六面体かご型に分子骨格を変える

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP