[スポンサーリンク]

化学者のつぶやき

フローシステムでペプチド合成を超高速化・自動化

マサチューセッツ工科大学・Bradley L. Penteluteらは、ペプチド固相合成法とフロー合成法を組み合わせて、超高速・高収率でペプチドを自動合成できるシステムを開発した。1工程(アミノ酸活性化・縮合・脱保護・洗浄まで)あたりおよそ40秒で完了する。

“A fully automated flow-based approach for accelerated peptide synthesis”
Mijalis, A. J.; Thomas, D. A. III; Simon, M. D.; Adamo, A.; Beaumont, R.; Jensen, K. F.; Pentelute, B. L.* Nat. Chem. Biol. 2017, 13, 464–466. doi:10.1038/nchembio.2318

問題設定と解決した点

 ペプチドの固相合成法は高収率でペプチドを合成でき、精製も簡便であるが、伸長反応の工程に何時間もかかってしまう。固相合成のフロー系への応用は20年ほど前から取り組まれていたが、

  • 流路内で反応溶液を再循環させる必要がある
  • 反応にある程度時間を要するため、活性化されたアミノ酸がエピ化・分解してしまう
  • 高圧に耐えるレジンが必要

などの問題があった。

 著者らはこれらの問題の解決に取り組んでいたが[1]、温度・活性化時間・検出の十分なコントロールができず、マニュアル合成では1ステップ5分程度かかっていた。今回のシステムではこれを完全自動化し、1ステップ1分以内の反応を達成している。

技術や手法の肝

 フロー合成装置を使ったFmoc固相合成法の完全自動化により自在な温度調節が可能になった。縮合過程を90℃にまで昇温することで、反応時間のさらなる短縮を達成している。

装置が実際に動く様子はこちらの動画をご覧頂きたい。
 レジン反応直後のフローUV吸収(302 nm:Fmoc基の吸収)を常にモニターすることで、①反応剤・アミノ酸除去完了の確認 ②Fmoc脱保護完了の確認ができ、タイムラグ無しに次の反応に移ることができる。またFmoc基のUVピーク面積から、おおよそのカップリング収率も求めることができる。

最初の大きな山がFmocアミノ酸原料。後の小さな山が脱保護されたFmoc由来の廃棄物。吸収がなくなることで完了点が判断できる(論文より引用)

主張の有効性検証

 本法の利点は ①速い ②全自動 の2つに尽きる。しかも従来と同程度の収率でペプチドを得られる。バッチ合成と比しての優位性や速度メリットを実証すべく、いくつかのペプチド合成に応用している。

 たとえばGHRH(29残基)は40分で58%収率。バッチ合成(30時間)では 60%収率。インスリンβチェーン(30残基)は20分で53%収率。バッチ合成(30時間)では45%収率。


GHRHの合成品のHPLCチャート(上:自動フロー合成、下:バッチ合成)。フロー合成のほうが純度が良い。(論文より引用)

議論すべき点

  • 残基によってはエピ化が進行してしまう。たとえばエピ化しやすいシステインを含むトリペプチドを合成するとシステイン残基が3%エピ化する。もっとも、バッチで90秒活性化すると16.7%エピ化するので、時間短縮の効果は出ているようである。
  • レジンの量を減らすことにより、通常の固相合成法では反応が進行しにくい基質でも良好に伸長を行うことができる。
  • 大量の試薬・溶媒と高温を要するため、非常にコストがかかる。希少なアミノ酸を導入する場合は高濃度にして溶媒を減らすことで当量を抑えられるが、それでも6当量のアミノ酸が必要である。
  • 上記理由により、現状では大量合成は厳しい。とはいえ研究試薬用、生物活性確認用のスケール程度のペプチド合成には、非常に有用と考えられる。

参考文献

  1. Pentelute, B. L. et al. ChemBioChem 2014, 15, 713. DOI: 10.1002/cbic.201300796
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ワールドクラスの日本人化学者が語る研究物語―『化学者たちの感動の…
  2. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…
  3. その電子、私が引き受けよう
  4. 金属原子のみでできたサンドイッチ
  5. ご注文は海外大学院ですか?〜出願編〜
  6. 第93回日本化学会付設展示会ケムステキャンペーン!Part II…
  7. 2012年ケムステ人気記事ランキング
  8. 新たなクリックケミストリーを拓く”SuFEx反応&#…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光親和性標識 photoaffinity labeling (PAL)
  2. 第15回 有機合成化学者からNature誌編集者へ − Andrew Mitchinson博士
  3. 第46回藤原賞、岡本佳男氏と大隅良典氏に
  4. 有機合成化学協会誌2017年8月号:C-H活性化・アリール化重合・オキシインドール・遠隔不斉誘導・ビアリールカップリング
  5. サリンを検出可能な有機化合物
  6. 超一流誌による論文選定は恣意的なのか?
  7. リンドラー還元 Lindlar Reduction
  8. ジャン=ルック・ブレダス Jean-Luc Bredas
  9. 細胞をすりつぶすと失われるもの
  10. 化学大手、原油高で原料多様化・ナフサ依存下げる

関連商品

注目情報

注目情報

最新記事

表現型スクリーニング Phenotypic Screening

表現型スクリーニング(Phenotypic Screening)とは、特定の生物現象に影響を与える化…

NMR解析ソフト。まとめてみた。①

合成に関連する研究分野の方々にとって、NMR測定とはもはやルーティーンワークでしょう。反応を仕掛けて…

エリック・アレクサニアン Eric J. Alexanian

エリック・J・アレクサニアン(Eric J. Alexanian、19xx年x月x日-)は、アメリカ…

光C-Hザンチル化を起点とするLate-Stage変換法

2016年、ノースカロライナ大学チャペルヒル校・Eric J. Alexanianらは、青色光照射下…

硤合 憲三 Kenso Soai

硤合 憲三 (そあい けんそう、1950年x月x日-)は、日本の有機化学者である。東京理科大学 名誉…

カルボン酸からハロゲン化合物を不斉合成する

第119回のスポットライトリサーチは、豊橋技術科学大学大学院 柴富研究室 博士後期課程1年の北原 一…

Chem-Station Twitter

PAGE TOP