[スポンサーリンク]

化学者のつぶやき

フローシステムでペプチド合成を超高速化・自動化

[スポンサーリンク]

マサチューセッツ工科大学・Bradley L. Penteluteらは、ペプチド固相合成法とフロー合成法を組み合わせて、超高速・高収率でペプチドを自動合成できるシステムを開発した。1工程(アミノ酸活性化・縮合・脱保護・洗浄まで)あたりおよそ40秒で完了する。

“A fully automated flow-based approach for accelerated peptide synthesis”
Mijalis, A. J.; Thomas, D. A. III; Simon, M. D.; Adamo, A.; Beaumont, R.; Jensen, K. F.; Pentelute, B. L.* Nat. Chem. Biol. 2017, 13, 464–466. doi:10.1038/nchembio.2318

問題設定と解決した点

 ペプチドの固相合成法は高収率でペプチドを合成でき、精製も簡便であるが、伸長反応の工程に何時間もかかってしまう。固相合成のフロー系への応用は20年ほど前から取り組まれていたが、

  • 流路内で反応溶液を再循環させる必要がある
  • 反応にある程度時間を要するため、活性化されたアミノ酸がエピ化・分解してしまう
  • 高圧に耐えるレジンが必要

などの問題があった。

 著者らはこれらの問題の解決に取り組んでいたが[1]、温度・活性化時間・検出の十分なコントロールができず、マニュアル合成では1ステップ5分程度かかっていた。今回のシステムではこれを完全自動化し、1ステップ1分以内の反応を達成している。

技術や手法の肝

 フロー合成装置を使ったFmoc固相合成法の完全自動化により自在な温度調節が可能になった。縮合過程を90℃にまで昇温することで、反応時間のさらなる短縮を達成している。

装置が実際に動く様子はこちらの動画をご覧頂きたい。
 レジン反応直後のフローUV吸収(302 nm:Fmoc基の吸収)を常にモニターすることで、①反応剤・アミノ酸除去完了の確認 ②Fmoc脱保護完了の確認ができ、タイムラグ無しに次の反応に移ることができる。またFmoc基のUVピーク面積から、おおよそのカップリング収率も求めることができる。

最初の大きな山がFmocアミノ酸原料。後の小さな山が脱保護されたFmoc由来の廃棄物。吸収がなくなることで完了点が判断できる(論文より引用)

主張の有効性検証

 本法の利点は ①速い ②全自動 の2つに尽きる。しかも従来と同程度の収率でペプチドを得られる。バッチ合成と比しての優位性や速度メリットを実証すべく、いくつかのペプチド合成に応用している。

 たとえばGHRH(29残基)は40分で58%収率。バッチ合成(30時間)では 60%収率。インスリンβチェーン(30残基)は20分で53%収率。バッチ合成(30時間)では45%収率。


GHRHの合成品のHPLCチャート(上:自動フロー合成、下:バッチ合成)。フロー合成のほうが純度が良い。(論文より引用)

議論すべき点

  • 残基によってはエピ化が進行してしまう。たとえばエピ化しやすいシステインを含むトリペプチドを合成するとシステイン残基が3%エピ化する。もっとも、バッチで90秒活性化すると16.7%エピ化するので、時間短縮の効果は出ているようである。
  • レジンの量を減らすことにより、通常の固相合成法では反応が進行しにくい基質でも良好に伸長を行うことができる。
  • 大量の試薬・溶媒と高温を要するため、非常にコストがかかる。希少なアミノ酸を導入する場合は高濃度にして溶媒を減らすことで当量を抑えられるが、それでも6当量のアミノ酸が必要である。
  • 上記理由により、現状では大量合成は厳しい。とはいえ研究試薬用、生物活性確認用のスケール程度のペプチド合成には、非常に有用と考えられる。

参考文献

  1. Pentelute, B. L. et al. ChemBioChem 2014, 15, 713. DOI: 10.1002/cbic.201300796

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ナノ粒子応用の要となる「オレイル型分散剤」の謎を解明-ナノ粒子の…
  2. フロー法で医薬品を精密合成
  3. 第19回次世代を担う有機化学シンポジウム
  4. 私がケムステスタッフになったワケ(4)
  5. 企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントと…
  6. 化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編
  7. 第3回慶應有機合成化学若手シンポジウム
  8. 超高速レーザー分光を用いた有機EL発光材料の分子構造変化の実測

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学大手2014年4–9月期決算:概して増収増益
  2. ライオン、男性の体臭の原因物質「アンドロステノン」の解明とその抑制成分の開発に成功
  3. コーリー・ウィンターオレフィン合成 Corey-Winter Olefin Synthesis
  4. デミヤノフ転位 Demjanov Rearrangement
  5. E-mail Alertを活用しよう!
  6. メタルフリー C-H活性化~触媒的ホウ素化
  7. 第89回―「タンパク質間相互作用阻害や自己集積を生み出す低分子」Andrew Wilson教授
  8. “クモの糸”が「ザ・ノース・フェイス」のジャケットになった
  9. フルオキセチン(プロザック) / Fluoxetine (Prozac)
  10. 史 不斉エポキシ化 Shi Asymmetric Epoxidation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP