[スポンサーリンク]

化学者のつぶやき

“アルデヒドを移し替える”新しいオレフィン合成法

[スポンサーリンク]

 

有機合成化学において、オレフィン同士をつなげる反応は「オレフィンカップリング反応」です。また、オレフィンを組み替える反応は「オレフィンメタセシス」です。そして、オレフィンをつくる反応は「オレフィン合成」となりますが、これらの3つのオレフィンに関する反応の開発の先駆者にはすべてノーベル化学賞が授けられています

例えば、オレフィンカップリング(Mizoroki–Heck反応)のHeckオレフィンメタセシスGrubbs、そして、オレフィン合成ではWittig反応のWittigです。

2015-01-30_16-27-11

 

また、先日紹介したBaranらによる鉄触媒を使った還元的カップリング反応は「オレフィンカップリング」、HoveydaらによるZ選択的な「オレフィンメタセシス」もこれらに分類されることはお分かりになると思います。つまり、精力的に研究が行われてきた分野であることは疑いなく、これらのノーベル賞を”超える”反応開発は、有機合成化学者にとって目指すべき一つの大きな指標だと言えます。

さて、すこし前置きが長くなりましたが、今回「オレフィン合成」の分野で画期的な手法がScience誌に報告されましたので紹介したいと思います。

“Rh-catalyzed C–C bond cleavage by transfer ”

Murphy, S. K.; Park, J.-W.; Cruz, F. A.; Dong, V. M. Science 2015347, 56.

DOI:10.1126/science.1261232

 

このオレフィン合成は原料のアルデヒド”移し替える”ことが鍵となっています。それでは背景から今回の論文の内容を覗いてみましょう。

アルデヒドを“移しかえる”

従来のオレフィン合成法といえば、E2脱離反応や、前述したアルデヒドとリンイリドをカップリングさせるWittig反応などがよく知られています(図1上)。

一方で、生体内では酵素の働きにより官能基を脱離させることによってオレフィンを生成する合成法が存在します。生体内の重要な代謝酵素、シトクロムP450はアルデヒドを脱離する(脱ヒドロホルミル化)ことでオレフィンをつくっています(図1下)。

「この変換反応を人工触媒の力でできないか?」

と考え、実現したのが、今回の論文の代表著者である米国カリフォルニア大アーヴァイン校のVy Dong教授です。

 

Fig1

図1 典型的なオレフィン合成と生体内のオレフィン合成

 

それでは実際にどのような反応を設計したのでしょうか。Dong教授が着目した化学種はRh–アシル種1です。このRh錯体1は、アルデヒドのカルボニルC–H結合がRh(I)に酸化的付加することで生成することが知られています[1]。この化学種は、オレフィンと反応してヒドロアシル化を起こすこと(path A)[2]、またカルボニルが金属中心に転位して脱カルボニル反応を起こすこと(path B)[3]がこれまでに見出されていました。

今回h、Dong教授は反応条件を綿密に調整し、既存のこれらの反応を抑制して、脱ヒドロホルミル化反応の開発を目指しました (図2)。

 

図2 Rh-アシル種を経由するこれまでの反応と今回の反応

図2 Rh-アシル種を経由するこれまでの反応と今回の反応

 

発想は至ってシンプルです。”アルデヒドを移しかえる”ことができればよいのです (図3)。すなわち、別のオレフィンを「ホルミル基アクセプター」として用いて、出発原料のアルデヒドのCO()と水素(ピンク )をそっくりそのまま移す、というものです。しかし、ここで勘のいい方ならお気づきかもしれませんが、移しかえた先にできるものもアルデヒドです。つまり、移しかえた先からまたCOと水素が戻り、平衡反応になってしまうという問題点があり、ホルミル基アクセプターになんらかの工夫が必要となります。

Fig4

図3 “アルデヒドを移し替える”

 

ヒドロホルミルアクセプター、ノルボルナジエン

そこで、選んだ「アクセプター」は、ノルボルナジエン。ノルボルナジエンは歪んだオレフィンであるため、逆反応は不利であるという性質を使いました。その結果、ほぼ定量的に目的のオレフィンを得ることに成功しています。反応後の粗生成物にはノルボルナジエンのヒドロホルミル化体が観測されており、Dong教授らのデザインした反応がしっかり実現したことを意味しています。特筆すべきことに、このノルボルナジエンをベンゾノルボルネンへと変更することで、反応温度を室温まで下げることができます。

図4 Dongらが開発したRh触媒を用いた反応条件

図4 Dongらが開発したRh触媒を用いた反応条件

 

かなり専門的な話になりますが、反応機構を紹介します。図5の Rh種Aから触媒サイクルはスタートし、アルデヒドC–H結合の酸化的付加(AB)、カルボン酸の還元的脱離(BC)、続くカルボニルの転位、β水素脱離(CD)を経てオレフィン錯体を生成します。次が肝心のオレフィン交換ステップであり(DD’)、ここで目的物の脱ヒドロホルミル体が得られます。ここから先は触媒サイクルの初めに戻る反応になりますが、よく見てみると、すべてAからDまでの経路の逆反応なのです。ただ違うのはRh上に結合しているのが原料のアルデヒド由来の化合物か、ノルボルナジエン由来の化合物か、だけです。ノルボルナジエンを用いることで、D’からC’のステップを不可逆反応にできたことが本反応のミソです。また、ここでは詳細は述べませんが、用いているRh錯体Aに配位しているカルボキシラートの役割も非常に重要で、芳香族カルボン酸でないとうまく反応は進行しません。詳しくは論文を読んでいただけたらと思います。

図5 想定されている反応機構

図5 想定されている反応機構

 

合成的有用性

この反応を用いて複雑な化合物のオレフィン化にも成功しています。一部、E/Zの選択性、生成するオレフィンの位置選択性に課題は見られるものの、比較的穏和な条件で多くのアルデヒドがオレフィンへと変換可能なことが実証されています。高度に官能基化されているマクロライド化合物のオレフィンへの変換反応は目を見張るものがあります。また、従来法では11工程かけて合成されていたyohimbenoneを比較的安価に入手出来るyohimbineからわずか3工程で合成を達成するなど[3]、合成化学的にも新たなツールとして利用できそうに思えます。

反応の適用範囲と(+)-yohimbenoneの合成

反応の適用範囲と(+)-yohimbenoneの合成

 

以上、アルデヒドを脱離基として用いた新規オレフィン合成法の論文を紹介しました。達成されている現象論もさることながら、その合成的有用性の売り方は見事、の一言に尽きると思います。

オレフィン合成法としてはもちろん、一炭素減炭反応としても捉えられますし、合成的なニーズはありそうだと感じますがいかがでしょうか。

 

参考文献

[1] Garralda, M. A. Dalton Trans. 2009, 2009, 3635. DOI:10.1039/B817263C

[2] Wills, M. C. Chem. Rev. 2010110, 725. DOI:10.1021/cr900096x

[3] Tsuji, J.; Ohno, K. Tetrahedron Lett. 19656, 3969. DOI:10.1016/S0040-4039(01)89127-9

 

 

関連書籍

 

外部リンク

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 女性化学賞と私の歩み【世界化学年 女性化学賞受賞 特別イベント】…
  2. 有機合成化学協会誌2019年11月号:英文版特集号
  3. あなたの合成ルートは理想的?
  4. ACD/ChemSketch Freeware 12.0
  5. ハニートラップに対抗する薬が発見される?
  6. 医薬品の品質管理ーChemical Times特集より
  7. 理論的手法を用いた結晶内における三重項エネルギーの流れの観測
  8. 2007年度ノーベル化学賞を予想!(1)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 米ファイザー、今期業績予想を上方修正・1株利益1.68ドルに
  2. プレヴォスト/ウッドワード ジヒドロキシル化反応 Prevost/Woodward Dihydroxylation
  3. 名古屋メダル―受賞者一覧
  4. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウム
  5. 第37回「トリプレットでないと達成できない機能を目指して」楊井 伸浩 准教授
  6. シンクロトロン放射光を用いたカップリング反応機構の解明
  7. 不斉ストレッカー反応 Asymmetric Strecker Reaction
  8. iPhone7は世界最強の酸に耐性があることが判明?
  9. 低分子ゲル化剤・増粘剤の活用と材料設計、応用技術
  10. 構造化学の研究を先導する100万件のビッグデータ

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ケムステバーチャルプレミアレクチャーの放送開始決定!

主に最先端化学に関する講演者をテーマ別で招待しオンライン講演を行っていただくケムステバーチャルシンポ…

分子運動を世界最高速ムービーで捉える!

第275回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 博士課程・清水俊樹 さんに…

「未来博士3分間コンペティション2020」の挑戦者を募集

科学技術人材育成のコンソーシアムの構築事業(次世代研究者育成プログラム)「未来を拓く地方協奏プラ…

イグノーベル賞2020が発表 ただし化学賞は無し!

「人々を笑わせ、そして考えさせてくれる業績」に対して贈られるノーベル賞のパロディである「イグノーベル…

電子実験ノートSignals Notebookを紹介します ②

前回に引き続き(間がだいぶ空いてしまいましたが、、、)Signals Notebookの使い…

化学者のためのエレクトロニクス講座~有機半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第120回―「医薬につながる複雑な天然物を全合成する」Richmond Sarpong教授

第120回の海外化学者インタビューは、リッチモンド・サーポン教授です。カリフォルニア大学バークレー校…

DNAナノ構造体が誘起・制御する液-液相分離

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。液-液相分離は近年の一…

Chem-Station Twitter

PAGE TOP