[スポンサーリンク]

化学者のつぶやき

“アルデヒドを移し替える”新しいオレフィン合成法

 

有機合成化学において、オレフィン同士をつなげる反応は「オレフィンカップリング反応」です。また、オレフィンを組み替える反応は「オレフィンメタセシス」です。そして、オレフィンをつくる反応は「オレフィン合成」となりますが、これらの3つのオレフィンに関する反応の開発の先駆者にはすべてノーベル化学賞が授けられています

例えば、オレフィンカップリング(Mizoroki–Heck反応)のHeckオレフィンメタセシスGrubbs、そして、オレフィン合成ではWittig反応のWittigです。

2015-01-30_16-27-11

 

また、先日紹介したBaranらによる鉄触媒を使った還元的カップリング反応は「オレフィンカップリング」、HoveydaらによるZ選択的な「オレフィンメタセシス」もこれらに分類されることはお分かりになると思います。つまり、精力的に研究が行われてきた分野であることは疑いなく、これらのノーベル賞を”超える”反応開発は、有機合成化学者にとって目指すべき一つの大きな指標だと言えます。

さて、すこし前置きが長くなりましたが、今回「オレフィン合成」の分野で画期的な手法がScience誌に報告されましたので紹介したいと思います。

“Rh-catalyzed C–C bond cleavage by transfer ”

Murphy, S. K.; Park, J.-W.; Cruz, F. A.; Dong, V. M. Science 2015347, 56.

DOI:10.1126/science.1261232

 

このオレフィン合成は原料のアルデヒド”移し替える”ことが鍵となっています。それでは背景から今回の論文の内容を覗いてみましょう。

アルデヒドを“移しかえる”

従来のオレフィン合成法といえば、E2脱離反応や、前述したアルデヒドとリンイリドをカップリングさせるWittig反応などがよく知られています(図1上)。

一方で、生体内では酵素の働きにより官能基を脱離させることによってオレフィンを生成する合成法が存在します。生体内の重要な代謝酵素、シトクロムP450はアルデヒドを脱離する(脱ヒドロホルミル化)ことでオレフィンをつくっています(図1下)。

「この変換反応を人工触媒の力でできないか?」

と考え、実現したのが、今回の論文の代表著者である米国カリフォルニア大アーヴァイン校のVy Dong教授です。

 

Fig1

図1 典型的なオレフィン合成と生体内のオレフィン合成

 

それでは実際にどのような反応を設計したのでしょうか。Dong教授が着目した化学種はRh–アシル種1です。このRh錯体1は、アルデヒドのカルボニルC–H結合がRh(I)に酸化的付加することで生成することが知られています[1]。この化学種は、オレフィンと反応してヒドロアシル化を起こすこと(path A)[2]、またカルボニルが金属中心に転位して脱カルボニル反応を起こすこと(path B)[3]がこれまでに見出されていました。

今回h、Dong教授は反応条件を綿密に調整し、既存のこれらの反応を抑制して、脱ヒドロホルミル化反応の開発を目指しました (図2)。

 

図2 Rh-アシル種を経由するこれまでの反応と今回の反応

図2 Rh-アシル種を経由するこれまでの反応と今回の反応

 

発想は至ってシンプルです。”アルデヒドを移しかえる”ことができればよいのです (図3)。すなわち、別のオレフィンを「ホルミル基アクセプター」として用いて、出発原料のアルデヒドのCO()と水素(ピンク )をそっくりそのまま移す、というものです。しかし、ここで勘のいい方ならお気づきかもしれませんが、移しかえた先にできるものもアルデヒドです。つまり、移しかえた先からまたCOと水素が戻り、平衡反応になってしまうという問題点があり、ホルミル基アクセプターになんらかの工夫が必要となります。

Fig4

図3 “アルデヒドを移し替える”

 

ヒドロホルミルアクセプター、ノルボルナジエン

そこで、選んだ「アクセプター」は、ノルボルナジエン。ノルボルナジエンは歪んだオレフィンであるため、逆反応は不利であるという性質を使いました。その結果、ほぼ定量的に目的のオレフィンを得ることに成功しています。反応後の粗生成物にはノルボルナジエンのヒドロホルミル化体が観測されており、Dong教授らのデザインした反応がしっかり実現したことを意味しています。特筆すべきことに、このノルボルナジエンをベンゾノルボルネンへと変更することで、反応温度を室温まで下げることができます。

図4 Dongらが開発したRh触媒を用いた反応条件

図4 Dongらが開発したRh触媒を用いた反応条件

 

かなり専門的な話になりますが、反応機構を紹介します。図5の Rh種Aから触媒サイクルはスタートし、アルデヒドC–H結合の酸化的付加(AB)、カルボン酸の還元的脱離(BC)、続くカルボニルの転位、β水素脱離(CD)を経てオレフィン錯体を生成します。次が肝心のオレフィン交換ステップであり(DD’)、ここで目的物の脱ヒドロホルミル体が得られます。ここから先は触媒サイクルの初めに戻る反応になりますが、よく見てみると、すべてAからDまでの経路の逆反応なのです。ただ違うのはRh上に結合しているのが原料のアルデヒド由来の化合物か、ノルボルナジエン由来の化合物か、だけです。ノルボルナジエンを用いることで、D’からC’のステップを不可逆反応にできたことが本反応のミソです。また、ここでは詳細は述べませんが、用いているRh錯体Aに配位しているカルボキシラートの役割も非常に重要で、芳香族カルボン酸でないとうまく反応は進行しません。詳しくは論文を読んでいただけたらと思います。

図5 想定されている反応機構

図5 想定されている反応機構

 

合成的有用性

この反応を用いて複雑な化合物のオレフィン化にも成功しています。一部、E/Zの選択性、生成するオレフィンの位置選択性に課題は見られるものの、比較的穏和な条件で多くのアルデヒドがオレフィンへと変換可能なことが実証されています。高度に官能基化されているマクロライド化合物のオレフィンへの変換反応は目を見張るものがあります。また、従来法では11工程かけて合成されていたyohimbenoneを比較的安価に入手出来るyohimbineからわずか3工程で合成を達成するなど[3]、合成化学的にも新たなツールとして利用できそうに思えます。

反応の適用範囲と(+)-yohimbenoneの合成

反応の適用範囲と(+)-yohimbenoneの合成

 

以上、アルデヒドを脱離基として用いた新規オレフィン合成法の論文を紹介しました。達成されている現象論もさることながら、その合成的有用性の売り方は見事、の一言に尽きると思います。

オレフィン合成法としてはもちろん、一炭素減炭反応としても捉えられますし、合成的なニーズはありそうだと感じますがいかがでしょうか。

 

参考文献

[1] Garralda, M. A. Dalton Trans. 2009, 2009, 3635. DOI:10.1039/B817263C

[2] Wills, M. C. Chem. Rev. 2010110, 725. DOI:10.1021/cr900096x

[3] Tsuji, J.; Ohno, K. Tetrahedron Lett. 19656, 3969. DOI:10.1016/S0040-4039(01)89127-9

 

 

関連書籍

 

外部リンク

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 地球外生命体を化学する
  2. ポケットにいれて持ち運べる高分子型水素キャリアの開発
  3. メソポーラスシリカ(3)
  4. 実験の再現性でお困りではありませんか?
  5. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  6. 留学せずに英語をマスターできるかやってみた(2年目)
  7. 「温故知新」で医薬品開発
  8. ReadCubeを使い倒す(3)~SmartCiteでラクラク引…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 岸義人先生来学
  2. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!
  3. 光有機触媒で開環メタセシス重合
  4. 柴崎正勝 Masakatsu Shibasaki
  5. ベンジル保護基 Benzyl (Bn) Protective Group
  6. エピスルフィド合成 Episulfide Synthesis
  7. 親子で楽しめる化学映像集 その1
  8. 産学官若手交流会(さんわか)第19回ワークショップ のご案内
  9. それは夢から始まったーベンゼンの構造提唱から150年
  10. ケムステも出ます!サイエンスアゴラ2013

関連商品

注目情報

注目情報

最新記事

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

Chem-Station Twitter

PAGE TOP