[スポンサーリンク]

化学者のつぶやき

カルベンで炭素ー炭素単結合を切る

[スポンサーリンク]

有機分子が反応する際にその化学結合に着目すると、結合の形成にはつねに結合の切断が伴います。分子骨格を構成する炭素ー炭素単結合(C–C結合)の形成と切断の完全制御は、分子モデルを組み立てるような自在合成が実現可能となるため、合成化学者の夢と言っても過言ではありません。

そのため古今東西、C–C結合の形成と切断に関連した反応開発研究が行われてきました。そのなかでも特に最近、”不活性な“C–C結合を切断し(C–C結合活性化)新しい結合を形成する触媒反応が注目されています。

そのC–C結合活性化反応には高活性な遷移金属触媒を用いることが常套手段となっていました。

ごく最近、N-ヘテロ環状カルベン(N-Heterocyclic Carbene; NHC)を用いたC–C結合切断・形成反応がシンガポール、Nanyang Technological UniversityのRobin Chiらのグループによって報告されました。

“Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone”

Li, B.-S.; Wang, Y.; Jin, Z.; Zheng, P.; Ganguly, R.; Chi, Y. R. Nat. Commun.2015, 6, 6207. DOI: 10.1038/ncomms7207

 

有機分子触媒の1つである、NHC触媒がシクロブテノンのC–C結合切断を触媒することを初めて示しただけでなく、遷移金属触媒反応では困難であった立体選択的分子間反応に成功しました。今回は、遷移金属触媒のC–C結合活性化反応から、本論文の紹介までを述べたいと思います。

遷移金属触媒によるC–C結合活性化

上述したように、典型的なアプローチではC–C結合を切る『はさみ』の役割をするのはRhやNiなどの遷移金属触媒です(図1)。例えば、シクロブテノン環C–C結合(比較的反応しやすい”不活性”C–C結合)が遷移金属触媒に酸化的付加することでC–C結合が切断されます。その後、オレフィンと反応して挿入、還元的脱離によって生成物が得られます。

 

図1 遷移金属触媒によるシクロブテノンのC–C結合活性化(出典:論文より改変)

図1 遷移金属触媒によるシクロブテノンのC–C結合活性化(出典:論文より改変)

 

しかし、遷移金属触媒を用いることの欠点があります。それは遷移金属触媒あるいはその中間体の反応性が高すぎるため、化学選択性やエナンチオ選択性などの制御が困難であるということです。近年、遷移金属触媒を用いた不斉反応が報告されているものの分子内反応が多く、立体選択的に分子間反応を進行させるのは簡単ではありません(図2)。[1]

 

図2 遷移金属触媒を用いた分子内不斉反応の例

図2 遷移金属触媒を用いた分子内不斉反応の例

NHC触媒によるC–C結合活性化

そこで、Chiらは通常使用される遷移金属触媒ではなく、これまで使われていなかった有機分子触媒に着目しました。では、どのようにC–C結合を有機分子触媒で開裂したのでしょうか?

彼らは有機分子触媒としてキラルなNHC、基質にシクロブテノン1とイミン2を選び、図3のような機構を考えました。彼らの考えでは、NHC触媒が1のケトン部位に対して求核付加した後(step1)、C–C結合が開裂しビニルエノラート中間体が生成します(step2)。この中間体がイミン2と反応し形式的[4+2]環化反応が進行した後(step3)、NHCの触媒が再生するとともに目的物が得られるのではないかというものです。

 

図3 ChiらのNHC触媒を用いるC–C結合活性化(出典:論文より改変)

図3 ChiらのNHC触媒を用いるC–C結合活性化(出典:論文より改変)

 

Chiらの考え通り、NHC触媒前駆体Dを用いてシクロブテノン1aとイミン2aを反応させたところ、目的物3aを高収率で得ることに成功しました(図4)。反応は立体選択的に進行し、2つの連続する不斉点を構築することができました。NHC触媒非存在下では反応は進行しないとのことで、Chiらが想定したようにNHC触媒のケトンへの付加反応が足がかりとなりC–C結合の開裂が起きていると考えられます。

 

図4 NHC触媒による反応の最適化の結果

図4 NHC触媒による反応の最適化の結果

基質適用範囲

著者らはシクロブテノン1やイミン2の各位置にアリール基やアルキル基など様々な置換基を導入して、基質適用範囲を綿密に調査しています。一部だけ紹介します(図5)。触媒前駆体Dを用いた場合、3aは高収率かつ高いエナンチオ選択性で得られるのに対して、イミンの置換基をメチル基から電子求引性のCl基を導入するとエナンチオ選択性が急激に低下します。一方、より電子求引性を有する触媒前駆体Eは、3aより3oに対して高いエナンチオ選択性を示しました。この結果から、エナンチオ選択性の制御にはイミンとNHC触媒前駆体の電子的性質が大きく関与することが予想されます。

図5 基質適用範囲

図5 基質適用範囲

 

以上、NHC触媒を用いたC–C 結合活性化反応の論文を紹介しました。基質と触媒が可逆的に相互作用して反応が進行する有機分子触媒の特徴を生かした反応開発だと思いました。C–C結合活性化においてはもっぱら遷移金属触媒が用いられてきましたが、有機分子触媒もC–C結合を活性化できることが見出されました。この論文を皮切りにさらなる方法論が開発されることに期待したいと思います。

 

参考文献

  1. (a) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485. DOI: 10.1002/anie.201108446. (b) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. DOI: 10.1021/ja309978c. (c) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 3001. DOI: 10.1002/anie.201311009.

 

 

関連書籍

[amazonjs asin=”3527334904″ locale=”JP” title=”N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis”][amazonjs asin=”904812865X” locale=”JP” title=”N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis (Catalysis by Metal Complexes)”][amazonjs asin=”4759813659″ locale=”JP” title=”不活性結合・不活性分子の活性化: 革新的な分子変換反応の開拓 (CSJカレントレビュー)”]

 

関連リンク

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 前人未踏の超分子構造体を「数学のチカラ」で見つけ出す
  2. キムワイプLINEスタンプを使ってみよう!
  3. 未来切り拓くゼロ次元物質量子ドット
  4. 【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オ…
  5. 女性科学者の卵を支援―「ロレアル・ユネスコ女性科学者 日本奨励賞…
  6. 有機合成化学協会誌2017年8月号:C-H活性化・アリール化重合…
  7. 白い器を覆っている透明なガラスってなんだ?
  8. 複数のイオン電流を示す人工イオンチャネルの開発

注目情報

ピックアップ記事

  1. ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起
  2. 特許情報から読み解く大手化学メーカーの比較
  3. 京大融合研、産学連携で有機発光トランジスタを開発
  4. たったひとつのたんぱく質分子のリン酸化を検出する新手法を開発
  5. 有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~
  6. Side Reactions in Organic Synthesis II
  7. 第45回「天然物合成化学の新展開を目指して」大栗博毅教授
  8. 林 雄二郎博士に聞く ポットエコノミーの化学
  9. 顕微鏡の使い方ノート―はじめての観察からイメージングの応用まで (無敵のバイオテクニカルシリーズ)
  10. 第22回ケムステVシンポ「次世代DDSナノキャリア」を開催します!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP