[スポンサーリンク]

化学者のつぶやき

カルベンで炭素ー炭素単結合を切る

有機分子が反応する際にその化学結合に着目すると、結合の形成にはつねに結合の切断が伴います。分子骨格を構成する炭素ー炭素単結合(C–C結合)の形成と切断の完全制御は、分子モデルを組み立てるような自在合成が実現可能となるため、合成化学者の夢と言っても過言ではありません。

そのため古今東西、C–C結合の形成と切断に関連した反応開発研究が行われてきました。そのなかでも特に最近、”不活性な“C–C結合を切断し(C–C結合活性化)新しい結合を形成する触媒反応が注目されています。

そのC–C結合活性化反応には高活性な遷移金属触媒を用いることが常套手段となっていました。

ごく最近、N-ヘテロ環状カルベン(N-Heterocyclic Carbene; NHC)を用いたC–C結合切断・形成反応がシンガポール、Nanyang Technological UniversityのRobin Chiらのグループによって報告されました。

“Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone”

Li, B.-S.; Wang, Y.; Jin, Z.; Zheng, P.; Ganguly, R.; Chi, Y. R. Nat. Commun.2015, 6, 6207. DOI: 10.1038/ncomms7207

 

有機分子触媒の1つである、NHC触媒がシクロブテノンのC–C結合切断を触媒することを初めて示しただけでなく、遷移金属触媒反応では困難であった立体選択的分子間反応に成功しました。今回は、遷移金属触媒のC–C結合活性化反応から、本論文の紹介までを述べたいと思います。

遷移金属触媒によるC–C結合活性化

上述したように、典型的なアプローチではC–C結合を切る『はさみ』の役割をするのはRhやNiなどの遷移金属触媒です(図1)。例えば、シクロブテノン環C–C結合(比較的反応しやすい”不活性”C–C結合)が遷移金属触媒に酸化的付加することでC–C結合が切断されます。その後、オレフィンと反応して挿入、還元的脱離によって生成物が得られます。

 

図1 遷移金属触媒によるシクロブテノンのC–C結合活性化(出典:論文より改変)

図1 遷移金属触媒によるシクロブテノンのC–C結合活性化(出典:論文より改変)

 

しかし、遷移金属触媒を用いることの欠点があります。それは遷移金属触媒あるいはその中間体の反応性が高すぎるため、化学選択性やエナンチオ選択性などの制御が困難であるということです。近年、遷移金属触媒を用いた不斉反応が報告されているものの分子内反応が多く、立体選択的に分子間反応を進行させるのは簡単ではありません(図2)。[1]

 

図2 遷移金属触媒を用いた分子内不斉反応の例

図2 遷移金属触媒を用いた分子内不斉反応の例

NHC触媒によるC–C結合活性化

そこで、Chiらは通常使用される遷移金属触媒ではなく、これまで使われていなかった有機分子触媒に着目しました。では、どのようにC–C結合を有機分子触媒で開裂したのでしょうか?

彼らは有機分子触媒としてキラルなNHC、基質にシクロブテノン1とイミン2を選び、図3のような機構を考えました。彼らの考えでは、NHC触媒が1のケトン部位に対して求核付加した後(step1)、C–C結合が開裂しビニルエノラート中間体が生成します(step2)。この中間体がイミン2と反応し形式的[4+2]環化反応が進行した後(step3)、NHCの触媒が再生するとともに目的物が得られるのではないかというものです。

 

図3 ChiらのNHC触媒を用いるC–C結合活性化(出典:論文より改変)

図3 ChiらのNHC触媒を用いるC–C結合活性化(出典:論文より改変)

 

Chiらの考え通り、NHC触媒前駆体Dを用いてシクロブテノン1aとイミン2aを反応させたところ、目的物3aを高収率で得ることに成功しました(図4)。反応は立体選択的に進行し、2つの連続する不斉点を構築することができました。NHC触媒非存在下では反応は進行しないとのことで、Chiらが想定したようにNHC触媒のケトンへの付加反応が足がかりとなりC–C結合の開裂が起きていると考えられます。

 

図4 NHC触媒による反応の最適化の結果

図4 NHC触媒による反応の最適化の結果

基質適用範囲

著者らはシクロブテノン1やイミン2の各位置にアリール基やアルキル基など様々な置換基を導入して、基質適用範囲を綿密に調査しています。一部だけ紹介します(図5)。触媒前駆体Dを用いた場合、3aは高収率かつ高いエナンチオ選択性で得られるのに対して、イミンの置換基をメチル基から電子求引性のCl基を導入するとエナンチオ選択性が急激に低下します。一方、より電子求引性を有する触媒前駆体Eは、3aより3oに対して高いエナンチオ選択性を示しました。この結果から、エナンチオ選択性の制御にはイミンとNHC触媒前駆体の電子的性質が大きく関与することが予想されます。

図5 基質適用範囲

図5 基質適用範囲

 

以上、NHC触媒を用いたC–C 結合活性化反応の論文を紹介しました。基質と触媒が可逆的に相互作用して反応が進行する有機分子触媒の特徴を生かした反応開発だと思いました。C–C結合活性化においてはもっぱら遷移金属触媒が用いられてきましたが、有機分子触媒もC–C結合を活性化できることが見出されました。この論文を皮切りにさらなる方法論が開発されることに期待したいと思います。

 

参考文献

  1. (a) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485. DOI: 10.1002/anie.201108446. (b) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. DOI: 10.1021/ja309978c. (c) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 3001. DOI: 10.1002/anie.201311009.

 

 

関連書籍

 

関連リンク

 

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 留学せずに英語をマスターできるかやってみた(6年目)(留学後編)…
  2. 【速報】2017年ノーベル化学賞は「クライオ電子顕微鏡の開発」に…
  3. タンパク質の構造を巻き戻す「プラスチックシャペロン」
  4. Impact Factorかh-indexか、それとも・・・
  5. 捏造のロジック 文部科学省研究公正局・二神冴希
  6. 反応の選択性を制御する新手法
  7. ビタミンB12を触媒に用いた脱ハロゲン化反応
  8. 芳香族性に関する新概念と近赤外吸収制御への応用

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 海洋天然物パラウアミンの全合成
  2. エッセイ「産業ポリマーと藝術ポリマーのあいだ」について
  3. CO2の資源利用を目指した新たなプラスチック合成法
  4. 有機アジド(1):歴史と基本的な性質
  5. りん酸2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチル : 2-(Methacryloyloxy)ethyl 2-(Trimethylammonio)ethyl Phosphate
  6. 企業の研究開発のつらさ
  7. 貴金属に取って代わる半導体触媒
  8. 世界の最新科学ニュース雑誌を日本語で読めるーNature ダイジェストまとめ
  9. ケイ素半導体加工に使えるイガイな接着剤
  10. デンドリマー / dendrimer

関連商品

注目情報

注目情報

最新記事

元素手帳 2018

今年も残すところあと1ヶ月半となってきました。来年に向けて、そろそろアレを購入される方もいら…

シクロペンタジエニル錯体の合成に一筋の光か?

β-炭素脱離を用いるシクロペンタジエニル(Cp)錯体の新たな調製法が報告された。本法により反応系中で…

ルミノール誘導体を用いるチロシン選択的タンパク質修飾法

2015年、東京工業大学・中村浩之らは、ルミノール誘導体と鉄-ポルフィリン複合体(ヘミン)を用い、チ…

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

Chem-Station Twitter

PAGE TOP