[スポンサーリンク]

化学者のつぶやき

カルベンで炭素ー炭素単結合を切る

[スポンサーリンク]

有機分子が反応する際にその化学結合に着目すると、結合の形成にはつねに結合の切断が伴います。分子骨格を構成する炭素ー炭素単結合(C–C結合)の形成と切断の完全制御は、分子モデルを組み立てるような自在合成が実現可能となるため、合成化学者の夢と言っても過言ではありません。

そのため古今東西、C–C結合の形成と切断に関連した反応開発研究が行われてきました。そのなかでも特に最近、”不活性な“C–C結合を切断し(C–C結合活性化)新しい結合を形成する触媒反応が注目されています。

そのC–C結合活性化反応には高活性な遷移金属触媒を用いることが常套手段となっていました。

ごく最近、N-ヘテロ環状カルベン(N-Heterocyclic Carbene; NHC)を用いたC–C結合切断・形成反応がシンガポール、Nanyang Technological UniversityのRobin Chiらのグループによって報告されました。

“Carbon–carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone”

Li, B.-S.; Wang, Y.; Jin, Z.; Zheng, P.; Ganguly, R.; Chi, Y. R. Nat. Commun.2015, 6, 6207. DOI: 10.1038/ncomms7207

 

有機分子触媒の1つである、NHC触媒がシクロブテノンのC–C結合切断を触媒することを初めて示しただけでなく、遷移金属触媒反応では困難であった立体選択的分子間反応に成功しました。今回は、遷移金属触媒のC–C結合活性化反応から、本論文の紹介までを述べたいと思います。

遷移金属触媒によるC–C結合活性化

上述したように、典型的なアプローチではC–C結合を切る『はさみ』の役割をするのはRhやNiなどの遷移金属触媒です(図1)。例えば、シクロブテノン環C–C結合(比較的反応しやすい”不活性”C–C結合)が遷移金属触媒に酸化的付加することでC–C結合が切断されます。その後、オレフィンと反応して挿入、還元的脱離によって生成物が得られます。

 

図1 遷移金属触媒によるシクロブテノンのC–C結合活性化(出典:論文より改変)

図1 遷移金属触媒によるシクロブテノンのC–C結合活性化(出典:論文より改変)

 

しかし、遷移金属触媒を用いることの欠点があります。それは遷移金属触媒あるいはその中間体の反応性が高すぎるため、化学選択性やエナンチオ選択性などの制御が困難であるということです。近年、遷移金属触媒を用いた不斉反応が報告されているものの分子内反応が多く、立体選択的に分子間反応を進行させるのは簡単ではありません(図2)。[1]

 

図2 遷移金属触媒を用いた分子内不斉反応の例

図2 遷移金属触媒を用いた分子内不斉反応の例

NHC触媒によるC–C結合活性化

そこで、Chiらは通常使用される遷移金属触媒ではなく、これまで使われていなかった有機分子触媒に着目しました。では、どのようにC–C結合を有機分子触媒で開裂したのでしょうか?

彼らは有機分子触媒としてキラルなNHC、基質にシクロブテノン1とイミン2を選び、図3のような機構を考えました。彼らの考えでは、NHC触媒が1のケトン部位に対して求核付加した後(step1)、C–C結合が開裂しビニルエノラート中間体が生成します(step2)。この中間体がイミン2と反応し形式的[4+2]環化反応が進行した後(step3)、NHCの触媒が再生するとともに目的物が得られるのではないかというものです。

 

図3 ChiらのNHC触媒を用いるC–C結合活性化(出典:論文より改変)

図3 ChiらのNHC触媒を用いるC–C結合活性化(出典:論文より改変)

 

Chiらの考え通り、NHC触媒前駆体Dを用いてシクロブテノン1aとイミン2aを反応させたところ、目的物3aを高収率で得ることに成功しました(図4)。反応は立体選択的に進行し、2つの連続する不斉点を構築することができました。NHC触媒非存在下では反応は進行しないとのことで、Chiらが想定したようにNHC触媒のケトンへの付加反応が足がかりとなりC–C結合の開裂が起きていると考えられます。

 

図4 NHC触媒による反応の最適化の結果

図4 NHC触媒による反応の最適化の結果

基質適用範囲

著者らはシクロブテノン1やイミン2の各位置にアリール基やアルキル基など様々な置換基を導入して、基質適用範囲を綿密に調査しています。一部だけ紹介します(図5)。触媒前駆体Dを用いた場合、3aは高収率かつ高いエナンチオ選択性で得られるのに対して、イミンの置換基をメチル基から電子求引性のCl基を導入するとエナンチオ選択性が急激に低下します。一方、より電子求引性を有する触媒前駆体Eは、3aより3oに対して高いエナンチオ選択性を示しました。この結果から、エナンチオ選択性の制御にはイミンとNHC触媒前駆体の電子的性質が大きく関与することが予想されます。

図5 基質適用範囲

図5 基質適用範囲

 

以上、NHC触媒を用いたC–C 結合活性化反応の論文を紹介しました。基質と触媒が可逆的に相互作用して反応が進行する有機分子触媒の特徴を生かした反応開発だと思いました。C–C結合活性化においてはもっぱら遷移金属触媒が用いられてきましたが、有機分子触媒もC–C結合を活性化できることが見出されました。この論文を皮切りにさらなる方法論が開発されることに期待したいと思います。

 

参考文献

  1. (a) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485. DOI: 10.1002/anie.201108446. (b) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005. DOI: 10.1021/ja309978c. (c) Souillart, L.; Parker, E.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 3001. DOI: 10.1002/anie.201311009.

 

 

関連書籍

 

関連リンク

 

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 未来の科学者を育てる政策~スーパーサイエンスハイスクール(SSH…
  2. どろどろ血液でもへっちゃら
  3. 工程フローからみた「どんな会社が?」~タイヤ編 その1
  4. どっちをつかう?:cooperateとcollaborate
  5. 反芳香族性を示すπ拡張アザコロネン類の合成に成功
  6. 文具に凝るといふことを化学者もしてみむとてするなり⑧:ネオジム磁…
  7. メルクがケムステVシンポに協賛しました
  8. オンライン授業を受ける/するってどんな感じ? 【アメリカで Ph…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況
  2. 積極的に英語の発音を取り入れてみませんか?
  3. 100円で買えるカーボンナノチューブ
  4. 第33回 新たな手法をもとに複雑化合物の合成に切り込む―Steve Marsden教授
  5. ヘル・フォルハルト・ゼリンスキー反応 Hell-Volhard-Zelinsky Reaction
  6. iphone用サイトを作成
  7. 交差アルドール反応 Cross Aldol Reaction
  8. 有機合成化学協会誌2020年12月号:2H-アジリン・配糖体天然物・リガンド-タンパク質間結合・キラルホスフィンオキシド・トリペプチド触媒・連続フロー水素移動反応
  9. ヒドロホルミル化反応 Hydroformylation
  10. 第一回 人工分子マシンの合成に挑む-David Leigh教授-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年3月
« 2月   4月 »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

注目情報

最新記事

PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

ケミカルバイオロジー・生体関連化学用途の分子構造において、とにかくよく見かけるポリエチレングリコール…

バリー・ハリウェル Barry Halliwell

バリー・ハリウェル (Barry Halliwell、1949年10月18日-)は、イギリスの生化学…

湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果による電子スピン状態の変化と特異性〜

第342回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科・宮澤友樹 さんにお願いし…

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP