[スポンサーリンク]

化学者のつぶやき

酸窒化物合成の最前線:低温合成法の開発

[スポンサーリンク]

 

セラミックス材料は数多くの種類が知られていますが、その中でもチタン酸バリウム(BaTiO3)は、セラミックス積層コンデンサや圧電素子として電子機器に使われている代表的な誘電体材料です。分野によってチタバリ、バリチタなどとも呼ばれ、ペロブスカイト型構造の結晶をもつ無機物としては教科書的な存在です。無機化学をかじったことがある方なら一度は聞いたことがあるでしょう。

チタン酸バリウム

チタン酸バリウム

「そんなチタン酸バリウムをいじって酸窒化物に」

というのが、今回紹介する京都大学大学院工学研究科・陰山グループの研究内容です。最後に陰山教授からメッセージもいただきましたので併せて紹介したいと思います。

 

ドープには過酷な条件が必要

電子機器の小型化により新しい電子材料が盛んに研究されてきていますが、その研究の中でよく行われる手法は酸化物に窒素や硫黄などをいれる、ヘテロドープを行うというものです。材料のバンドギャップが変わるため、電気特性や可視光吸収(つまり色)が変わることなどが知られています。しかし、そのような材料の合成には高温下での焼結など厳しい条件が必要とされてきました。

 

ヒドリド還元による「活性水素」導入

陰山グループは2012年にチタン酸バリウムの中にヒドリド(H)を導入することに成功し話題を集めました(下図は京大HPより)[1]。 通常、水素は正電荷をもちますが、カルシウムハイドライド(CaH2)を還元反応に用いることで、400 °Cの低温(注:この世界では大変低温です)でも結晶内の酸素とヒドリドが交換されることを発見しました。最終的に得られた化合物はBaTiO2.4H0.6であり、結晶中の酸素の2割が水素置換されたことになります。この水素はさらに重水素(D)へと簡単に置換されることから、この酸水素化物が高い水素イオン伝導性をもつことが確認されました。

kageyama_natmat

チタン酸バリウムに水素を導入する

 

酸窒化物への発展

酸水素化物のヒドリドに高い移動度があるのならば、他の陰イオンを導入できないか?上述のヒドリドを導入したチタン酸バリウムを500 °C以下のアンモニア(NH3)気中で処理したところ、水素が窒素に置換される(BaTiO2.4N0.4)ことが発見されました(トップの図は京大HPより)[2]。 このような方法で作製された酸窒化物は表面のみならず内部まで均質な組成をもつため、新しい強誘電材料としての応用が期待されています。

さらに最新の発表では、アンモニアではなく窒素(N2)気中で処理しても酸水素化物から酸窒化物が作製できること、結晶中にフッ素(F)や水酸化物(OH)の導入することなどにも成功しています(図は論文より)[3]。 いずれの材料もできることさえわかってしまえば簡単そうに思えてしまいますが、分析には相当な苦労をしたのだろうと私には感じられました。

kageyama_jacs

窒素、フッ素、水酸基も導入できる

 

 

ここで紹介したすべての材料の特徴は、表面だけではなく内部まで均質な組成をもつ結晶であることです。この簡易な手法による材料合成の研究が今後ますます発展すれば、今まで考えられなかった革新的材料が生まれてくるかもしれません。そんな無限の可能性のある基礎材料を矢継ぎ早に合成している陰山教授の研究に今後も注目していきたいと思います。最後に、陰山教授による研究の経緯に関するメッセージをどうぞ。大変わかりやすいです。

 

研究者からのメッセージ

今回示した反応の最初の動機は、酸水素化物(BaTiO2.4H0.6)におけるヒドリド伝導の評価にありました。同物質の400 °Cにおけるヒドリド拡散は、2012年の間接的な実験により示していましたが、金属であるため直接的な観測が困難でした。この問題に関わっていたポスドクの矢島健さん(現・東大助教)は、もし、絶縁化できれば電子伝導の寄与がなくなるのでヒドリド伝導を直接評価できると考え、

「BaTi3.4+O2.4H0.6 → BaTi4+O2.4H0.3N0.3

と表されるアンモニア反応を提案しました。矢島さんは、竹入史隆君(博士後期課程)とともにアンモニア炉の設計を担当していたのでこの発想は自然な流れだったと思います。ちなみに、アンモニアは低温(<500 °C)では十分に酸化物の窒化をできない(してもせいぜい表面)ことも知っていましたが、そもそも BaTiO2.4H0.6 は高温ではもたないので低温で試すしかありませんでした。しかし、低温で窒化反応を起こした上に、BaTiO2.4H0.3N0.3の組成でピタリと止めることは現実的には無理筋だと私は感じていました。よって、窒化に加え、絶縁化を示唆するデータを見たときには、世の中こんなに予定通りいくこともあるのかと驚きました(勝率は低いので…)。しばらくして、生成物に残っているはずの水素が全く検出されなかったため、絶縁体(Ti4+)であることを踏まえ、実際にはBaTiO2.4N0.4 が得られたのだろうと予想しました。

最初の着想からここに辿り着くまでは、わずか1、2ヶ月です(2011年初旬)。しかし、酸化物と違い、酸窒化物の組成分析・構造解析は一筋縄ではいかず、私たちもやってみて初めてその難しさを痛感しました。通常の無機化合物では、カチオン(金属)が仕込み組成を維持すると仮定することは一般に許されます。しかし、飛びやすいアニオン種ではそれが許されません。今回、反応途中でできる中間体には、アニオン位置に酸素、水素、窒素、欠損という4つのパラメーターがあるため、通常の(放射光)X線回折や中性子回折のみで一義的に解くことが当然不可能です。そこで、元素分析、磁化測定、NMR、TDS など考えうる全ての測定手段を総動員しました。モノができていることをプロの固体化学者が納得する(であろう)レベルにまでもっていくのに3年程かかりました。ついでですが、出発物質として用いた酸水素化物(BaTiO2.4H0.6)の最初の合成は2008年ですから、やはり同じくらいの時間がかかっています(酸化物中の水素はヒドリドではなくプロトンというのが常識なので)。意外な結果が得られたとき、それが重要であればあるほど証明するのは大変なことです。徹底的にやるしかありません。本研究では、上記の2人に加え、會津康平君、吉宗航君が粘り強く頑張ってくれました。

アンモニアガスでなくても窒素ガスでも同様の反応が進むことがわかったのは最初の合成から2年後のことです。酸水素化物に関する別プロジェクトを進めていた増田直也君がたまたま窒素50気圧下で反応させたところこの発見に到りました。当初は、高い窒素圧がポイントだろうと予想しましたが、徐々に圧力をさげても反応は進み、結局、常圧でも反応することがわかりました。つまり、アンモニアや高圧ガスを取り扱わない研究室でも簡単に合成ができたわけです。窒素分子の三重結合解裂の困難さを考えれば、それほど思いもよらぬ反応だったと言い訳をしたいところです。しかし、アンモニアを用いた反応をある会議で発表したあとに、東北大の山根久典先生より、「この反応、窒素でも進むのではないですか」とのコメントを個別にいただきました。やはり化学がわかる人にはわかるのですね。

最後に、無機固体(extended solids)における本反応を「錯体(溶液)化学の概念を使ってヒドリドがレイバイルな配位子とみなせば説明できる」と指摘したのは、錯体化学を含め広い化学の知識と経験がある講師の小林洋治さんです。私はこの見方を気に入り、この合成戦略を “Labile Hydride Strategy” と名付け、最初の論文 [2] のタイトルに含めることにしました。

続報 [3] では、窒素ガスを用いた反応を含め、この合成戦略が実際に拡張可能であることを示しました。ところで、固体化学は、化学分野の中で孤立している(あるいは化学ではない)というイメージがあるかもしれません。

本サイトの読者の多くは、固体化学にあまり馴染みがないかもしれませんが、本結果が示すように無機固体は合成の観点からは未開拓でブレークスルーの余地は大いにあると思います。

「化学」の心をもった若い研究者に参入して欲しいと願っています。

京都大学 陰山 洋

陰山研究室写真

陰山研究室写真 (陰山研究室HPより)

 

文献

  1.  “An Oxyhydride of BaTiO3 Exhibiting Hydride Exchange and Electronic Conductivity” Yoji Kobayashi, Olivier J. Hernandez, Tatsunori Sakaguchi, Takeshi Yajima, Thierry Roisnel, Yoshihiro Tsujimoto, Masaki Morita, Yasuto Noda, Yuuki Mogami, Atsushi Kitada, Masatoshi Ohkura, Saburo Hosokawa, Zhaofei Li, Katsuro Hayashi, Yoshihiro Kusano, Jung eun Kim, Naruki Tsuji, Akihiko Fujiwara, Yoshitaka Matsushita, Kiyonori Takegoshi, Kazuyoshi Yoshimura, Masashi Inoue, Mikio Takano, and Hiroshi Kageyama, Nature Materials 11, 507-511 (2012).
  2.  “A Labile Hydride Strategy for the Synthesis of Heavily Nitridized BaTiO3” Takeshi Yajima, Fumitaka Takeiri, Kohei Aidzu, Hirofumi Akamatsu, Koji Fujita, Masatoshi Ohkura, Wataru Yoshimune, Shiming Lei, Venkatraman Gopalan, Katsuhisa Tanaka, C. M. Brown, Mark A. Green, Takafumi Yamamoto, Yoji Kobayashi, and Hiroshi Kageyama, Nature Chemistry 7, 1017-1023 (2015).
  3.  “Hydride in BaTiO2.5H0.5: A Labile Ligand in Solid State Chemistry” Naoya Masuda, Yoji Kobayashi, Olivier Hernandez, Thierry Bataille, Serge Paofai, Hajime Suzuki, Clemens Ritter, Naoki Ichijo, Yasuto Noda, Kiyonori Takegoshi, Cédric Tassel, Takafumi Yamamoto, and Hiroshi Kageyama, J. Am. Chem. Soc., published online.

 

外部リンク

 

Avatar photo

GEN

投稿者の記事一覧

大学JK->国研研究者。材料作ったり卓上CNCミリングマシンで器具作ったり装置カスタマイズしたり共働ロボットで遊んだりしています。ピース写真付インタビューが化学の高校教科書に掲載されました。

関連記事

  1. ふにふにふわふわ☆マシュマロゲルがスゴい!?
  2. 高収率・高選択性―信頼性の限界はどこにある?
  3. 有機反応を俯瞰する ー芳香族求電子置換反応 その 1
  4. プラスマイナスエーテル!?
  5. 人生、宇宙、命名の答え
  6. ニッケル触媒による縮合三環式化合物の迅速不斉合成
  7. 第7回HOPEミーティング 参加者募集!!
  8. 【第11回Vシンポ特別企画】講師紹介②:前田 勝浩 先生

注目情報

ピックアップ記事

  1. 梅干し入れると食中毒を起こしにくい?
  2. 第3のエネルギー伝達手段(MTT)により化学プラントのデザインを革新する
  3. ジャネット・M・ガルシア Jeannette M. Garcia
  4. (+)-MTPA-Cl
  5. 反応中間体の追跡から新反応をみつける
  6. 消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立
  7. 宮田完ニ郎 Miyata Kanjiro
  8. 島津製作所 創業記念資料館
  9. ロルフ・ヒュスゲン Rolf Huisgen
  10. アミンの新合成法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年12月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP