[スポンサーリンク]

ケムステニュース

MIT、空気中から低濃度の二酸化炭素を除去できる新手法を開発

[スポンサーリンク]

MITの化学工学 Ralph Landau教授のT. Alan Hatton氏らは、空気中から二酸化炭素を除去する新しい方法を開発した。およそ400ppmという低濃度にも対応できるもので、研究成果は2019年10月1日、『Energy and Environmental Science』誌に掲載されている。 (引用:fabcross 12月4日)

工場や発電所などから二酸化炭素を回収することは地球の温暖化を防ぐ上で重要な研究課題であり、吸着剤やアミンを使って二酸化炭素を吸着させるなど様々な方法が研究されています。しかしながら多くの方法は、排出されるときの二酸化炭素濃度が高いとき(10%以上)に効果を発揮するものであり、低濃度では効率が悪いのが現状です。また、吸着させた二酸化炭素を放出する際に、圧力を変えたり熱をかけたりとたくさんのエネルギーが必要なことも課題の一つです。

そこで本研究では、電気化学反応を使って二酸化炭素の吸着と脱着を行う方法を開発しました。鍵となる分子はPoly-1,4-anthraquinonePolyvinylferroceneで、それぞれを負極と正極に用いることで、充電と放電現象とともに二酸化炭素の吸着と脱着を可能にしました。具体的には充電する際にはPoly-1,4-anthraquinoneが電子を受け取り還元されると同時に二酸化炭素と反応して炭酸イオンに変化し、Polyvinylferroceneの鉄が電子を放出して酸化されます。放電する際には、Poly-1,4-anthraquinoneが電子と二酸化炭素を放出してPolyvinylferroceneの鉄イオンが電子を受け取り還元される仕組みです。

吸着時の電極反応

脱着時の電極反応

このPoly-1,4-anthraquinoneは、二段階の酸化還元電位があり2電子を受け取ることができます。ただし、一段階目で還元されると、求電子性が低くなり二段階目の還元反応は起きにくくなります。一方で、二酸化炭素が存在する系では、一段階目で還元された後に二酸化炭素が結合します。この一置換体の場合、炭酸イオンが電子を吸引されるためPoly-1,4-anthraquinone自体の求電子性が低下せずに、還元されやすいまま2分子目の二酸化炭素と反応することできます。このような機構によって効率的に二酸化炭素を吸着することに成功させました。

還元反応

有望な反応機構でも反応効率は、装置によって大きく変化します。本研究でも効率の良い反応を促進するため、上記の化合物をカーボンナノチューブ(CNT)に吸着させて使いました。具体的には、Poly-1,4-anthraquinoneとPolyvinylferroceneそれぞれをCNTに吸着させ、それを電極板となるカーボンマットの不織布に染み込ませ乾燥させました。どちらの電極においても染み込ませた後ゆっくり乾燥させることが重要で、これによりCNTとPoly-1,4-anthraquinone、Polyvinylferrocene複合体が均一にコーティングされることがわかりました。このような製法で作られた電極を使い、二酸化炭素を吸着できるシステムを試作したところ、7000回以上の繰り返し性能を60%から70%のquinone 利用率、90%のファラデー効率で二酸化炭素を吸着させる能力があることがわかりました。二酸化炭素の濃度を変えて実験を行ったところ、化石燃料を燃焼させたときの典型的な二酸化炭素の濃度である10%だけでなく、低い濃度 (0.6–0.8%)でも吸着能を発揮できることがわかりました。他の二酸化炭素吸着方法では圧力や温度の差が吸脱着能力を左右するものの、この方法では環境に依存せず常に一定の能力を発揮できることが大きなメリットであり、二酸化炭素の濃度によらずいろいろな場所で使うことができると主張しています。具体的には、他の方法では、二酸化炭素の濃度に応じて1トンあたり1~10ギガジュールのエネルギーを使うものの、この方法では、濃度によらず1ギガジュールのエネルギーで回収できるとしています。

温度変化による吸脱着反応(左上)では温度差によって、圧力変化による場合(右上)では、圧力差によって有効吸着容量が変わる。一方でこの方法(下)では、圧力によって変化しないため有効吸着容量は変わらない。

 

実用面に関して、電池の電極はロールツーロールで製造することができ、電極1平方メートルあたり数十ドルで生産できると推定しています。研究チームではVerdoxというスタートアップを設立し商業化を進めるそうです。二酸化炭素の回収については、吸着材の研究が広く行われている中、これは興味深い機構の二酸化炭素回収技術だと感じました。高効率を引き出すために、高い温度や圧力が必要な場合、付随設備も高価で巨大になりがちです。その点、使用環境に依存せずに高効率で二酸化炭素を回収できることは、大規模な工場だけでなく小規模な二酸化炭素の発生拠点でも実用レベルで活用できる可能性があるように思います。

二酸化炭素の問題は、回収して終わりではなく、貯蔵か他の物質に変換するところまで開発しなくてはなりません。地下貯蔵が有望な最終処分方法のように思えますが、貯蔵できる場所は土地の地形によって限られています。そのため、プラントなどで変換する技術も必要で、上記のような回収技術と二酸化炭素を原料とする化学反応を組み合わせ、回収から化学変換までを限られた場所で完結させるのが理想の処理方法ではないかと思います。

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 進む分析機器の開発
  2. 100兆分の1秒を観察 夢の光・XFEL施設公開
  3. 三菱化学:子会社と持ち株会社設立 敵対的買収を防ぐ狙い
  4. 三菱化学、より自然光に近い白色LED用の材料開発
  5. マラリア治療の新薬の登場を歓迎する
  6. 製造過程に発がん性物質/テフロンで米調査委警告
  7. 特許資産規模ランキング2019、トップ3は富士フイルム、三菱ケミ…
  8. ファンケルの身近な健康に関する研究開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編
  2. 高機能性金属錯体が拓く触媒科学:革新的分子変換反応の創出をめざして
  3. シコニン
  4. 中分子創薬に挑む中外製薬
  5. ビス(トリ-o-トリルホスフィン)パラジウム(II) ジクロリド:Bis(tri-o-tolylphosphine)palladium(II) Dichloride
  6. ペンタシクロアナモキシ酸 pentacycloanamoxic acid
  7. 掃除してますか?FTIR-DRIFTチャンバー
  8. Googleの面接で話した自分の研究内容が勝手に特許出願された
  9. 分子研オープンキャンパス2023(大学院説明会・体験入学説明会) 参加登録受付中!
  10. 半年服用で中性脂肪3割減 ビタミンPと糖の結合物質

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP