[スポンサーリンク]

化学者のつぶやき

生合成を模倣しない(–)-jorunnamycin A, (–)-jorumycinの全合成

[スポンサーリンク]

クロスカップリングおよびイソキノリンの不斉水素化を鍵反応とした(–)-jorunnamycin A, (–)-jorumycin全合成が達成された。生合成模倣から離れた本合成手法は、類縁体やビステトラヒドロイソキノリン(bis-THIQ)骨格をもった他の天然物合成への応用が期待できる。

 ()-jorunnamycin A, ()-jorumycin

ジョルナマイシンAjorunnamycin A:1)およびジョルマイシン(jorumycin:2)2004, 2000年にjorunna funebrisから単離、構造決定された天然物であり、その興味深い化学構造や強力な生物活性、独自の作用機序のため注目されてきた。これらの天然物は5環式炭素骨格、高度に酸化された環末端および中央にプロイミニウムイオンを有する(1A)。プロイミニウムイオン部位は生体内でアルキル化剤として作用し、DNAの共有結合的修飾をもたらすことで細胞死を引き起こす。したがって、これらの天然物は抗がん剤となりうる化合物として注目されている。実際に1, 2の類縁体であるエクチナサイジン743 (ecteinascidin 743:3)が既に抗がん剤として広く使われている。

1, 2の合成において鍵となるのはビステトラヒドロイソキノリン(bis-THIQ)骨格をいかにして構築するかである。これまでに報告されているbis-THIQ骨格の化学合成手法は生合成経路を模倣した芳香族求電子置換反応を応用したものであった(1B)(1)。しかし、A環やE環上に電子求引基が存在する誘導体への適用は難しいという制限がある。

今回カリフォルニア工科大学のStoltz教授らは、生合成経路を模倣しない新合成戦略を打ち出して1, 2の全合成に成功したので紹介する(1C)。具体的には6のビスイソキノリン骨格をC-Hクロスカップリングによって形成し、その後エナンチオ選択的水素化を行うことでbis-THIQ骨格の構築を行った。クロスカップリングを用いた本合成法は各イソキノリンユニットが電子豊富な基質に限定されることがないため、bis-THIQ骨格を有する天然物の合成に広く利用できると考えられる。

図1. Bis-THIQ類とその合成例

“Concise total synthesis of (–)-jorunnamycin A and (–)-jorumycin enabled by asymmetric catalysis”

Welin, E. R.; Ngamnithiporn, A.; Klatte, M.; Lapointe, G.; Pototschnig, G. M; McDermott, M. S. J.; Conklin, D.; Christopher D. Gilmore, C. D; Tadross, P. M.; Haley, C. K.; Negoro, K.; Glibstrup, E.; Grünanger, C. U.; Allan,K. M.; Virgil, S. C.; Dennis J. Slamon, D. J*.; Stoltz B. M.Science2019, 363, 270.

DOI: 10.1126/science.aav3421

論文著者の紹介

研究者:Brian M. Stoltz

研究者の経歴:1993 B.S., Indiana University of Pennsylvania
1997 Ph.D., Yale University (Prof. John Wood)
1998-2000 NIH Postdoctoral Fellow, Harvard University (Prof. E. J. Corey)
2000 Assistant Professor, California Institute of Technology
2006 Professor, California Institute of Technology

研究内容:生理活性化合物の全合成研究・反応開発

論文の概要

10のビスイソキノリン骨格をイソキノリン78のクロスカップリングから合成した。各ユニットの詳細な合成はここでは割愛する。著者らはFagnouらが報告したC–Hカップリング反応を改良した条件において7および8のカップリングが効率的に進行することを見出し、ビスイソキノリン10を高収率で合成した(2)。このC–H結合活性化は9のような遷移状態を経て進行すると推測されている。続いて、B環上のメチル基およびD環上のメチレン基の選択的酸化反応を行うことで11を合成した。次にB, D環のエナンチオ選択的水素化を行った。Ciba-Geigy社で開発されたイリジウム触媒とキラル配位子15を組み合わせる条件を用いることで水素化反応、続くラクタム形成が効率的に進行し、高収率・高立体選択性で14を得た。その後A, E環の酸化などを経て5工程で1の全合成を達成した。また、1のヒドロキシ基のアセチル化およびシアノ基のヒドロキシ化を行うことで2を合成した。生合成模倣から離れたクロスカップリングおよび不斉水素化を用いた本合成手法により、bis-THIQ骨格をもつ天然物やその誘導体への新たな合成アプローチが可能になると考えられる。

図2. Stoltzらの(–)-jorunnamycin A, (–)-jorumycinの合成経路

参考文献

  1. Chrzanowska, M.; Grajewska, A.; Rozwadowska, D. M. Chem. Rev. 2016, 116, 12369. DOI: 1021/acs.chemrev.6b00315
  2. Campeau, L. C.; Schipper, D. J; Fagnou, K. J. Am. Chem.Soc. 2008, 130, 3266. DOI: 1021/ja710451s
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Kindle Paperwhiteで自炊教科書を読んでみた
  2. 生きた細胞内でケイ素と炭素がはじめて結合!
  3. 塗る、刷る、printable!進化するナノインクと先端デバイス…
  4. Happy Friday?
  5. CRISPRで薬剤分子-タンパク相互作用を解明する
  6. レビュー多くてもよくね?
  7. 誰でも使えるイオンクロマトグラフ 「Eco IC」新発売:メトロ…
  8. 「機能性3Dソフトマテリアルの創出」ーライプニッツ研究所・Möl…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 縮合剤 Condensation Reagent
  2. 非選択性茎葉処理除草剤の『ザクサ液剤』を登録申請
  3. 熱すると縮む物質を発見 京大化学研
  4. 有機アジド(4)ー芳香族アジド化合物の合成
  5. 4-メルカプト安息香酸:4-Mercaptobenzoic Acid
  6. ヘテロ原子を組み込んだ歪シクロアルキン簡便合成法の開発
  7. 熱活性化遅延蛍光 Thermally Activated Delayed Fluorescence (TADF)
  8. JEOL RESONANCE「UltraCOOL プローブ」: 極低温で感度MAX! ②
  9. オゾンホールのさらなる縮小を確認 – アメリカ海洋大気庁発表
  10. 斬新な官能基変換を可能にするパラジウム触媒

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

アメリカ大学院留学:卒業後の進路とインダストリー就活(2)

前回の記事では、アメリカのPhD取得後の進路について、一般的な進路や就活を始める時期について紹介しま…

【第11回Vシンポ特別企画】講師紹介③:大内 誠 先生

今回の記事では、第11回バーチャルシンポジウム「最先端精密高分子合成」をより楽しむべく講師の一人であ…

第131回―「Nature出版社のテクニカルエディターとして」Laura Croft博士

第131回の海外化学者インタビューはローラ・クロフト博士です。Nature Chemistry誌とN…

【書籍】機器分析ハンドブック2 高分子・分離分析編

2020/10/20に刊行されたばかりのホットな書籍をご紹介します。概要はじめて機器…

アメリカ大学院留学:卒業後の進路とインダストリー就活(1)

PhD留学について、受験や大学院生活についての情報は豊富に手に入るようになってきていますが、卒業後の…

オキシム/ヒドラゾンライゲーション Oxime/Hydrazone Ligation

概要ケトン・アルデヒドは生体分子にまれにしか存在しないため、位置選択的な生体共役反応の標的として…

その構造、使って大丈夫ですか? 〜創薬におけるアブナいヤツら〜

新参スタッフの DAICHAN です。前回の記事「その化合物、信じて大丈夫ですか…

Chem-Station Twitter

PAGE TOP