[スポンサーリンク]

化学者のつぶやき

生合成を模倣しない(–)-jorunnamycin A, (–)-jorumycinの全合成

[スポンサーリンク]

クロスカップリングおよびイソキノリンの不斉水素化を鍵反応とした(–)-jorunnamycin A, (–)-jorumycin全合成が達成された。生合成模倣から離れた本合成手法は、類縁体やビステトラヒドロイソキノリン(bis-THIQ)骨格をもった他の天然物合成への応用が期待できる。

 ()-jorunnamycin A, ()-jorumycin

ジョルナマイシンAjorunnamycin A:1)およびジョルマイシン(jorumycin:2)2004, 2000年にjorunna funebrisから単離、構造決定された天然物であり、その興味深い化学構造や強力な生物活性、独自の作用機序のため注目されてきた。これらの天然物は5環式炭素骨格、高度に酸化された環末端および中央にプロイミニウムイオンを有する(1A)。プロイミニウムイオン部位は生体内でアルキル化剤として作用し、DNAの共有結合的修飾をもたらすことで細胞死を引き起こす。したがって、これらの天然物は抗がん剤となりうる化合物として注目されている。実際に1, 2の類縁体であるエクチナサイジン743 (ecteinascidin 743:3)が既に抗がん剤として広く使われている。

1, 2の合成において鍵となるのはビステトラヒドロイソキノリン(bis-THIQ)骨格をいかにして構築するかである。これまでに報告されているbis-THIQ骨格の化学合成手法は生合成経路を模倣した芳香族求電子置換反応を応用したものであった(1B)(1)。しかし、A環やE環上に電子求引基が存在する誘導体への適用は難しいという制限がある。

今回カリフォルニア工科大学のStoltz教授らは、生合成経路を模倣しない新合成戦略を打ち出して1, 2の全合成に成功したので紹介する(1C)。具体的には6のビスイソキノリン骨格をC-Hクロスカップリングによって形成し、その後エナンチオ選択的水素化を行うことでbis-THIQ骨格の構築を行った。クロスカップリングを用いた本合成法は各イソキノリンユニットが電子豊富な基質に限定されることがないため、bis-THIQ骨格を有する天然物の合成に広く利用できると考えられる。

図1. Bis-THIQ類とその合成例

“Concise total synthesis of (–)-jorunnamycin A and (–)-jorumycin enabled by asymmetric catalysis”

Welin, E. R.; Ngamnithiporn, A.; Klatte, M.; Lapointe, G.; Pototschnig, G. M; McDermott, M. S. J.; Conklin, D.; Christopher D. Gilmore, C. D; Tadross, P. M.; Haley, C. K.; Negoro, K.; Glibstrup, E.; Grünanger, C. U.; Allan,K. M.; Virgil, S. C.; Dennis J. Slamon, D. J*.; Stoltz B. M.Science2019, 363, 270.

DOI: 10.1126/science.aav3421

論文著者の紹介

研究者:Brian M. Stoltz

研究者の経歴:1993 B.S., Indiana University of Pennsylvania
1997 Ph.D., Yale University (Prof. John Wood)
1998-2000 NIH Postdoctoral Fellow, Harvard University (Prof. E. J. Corey)
2000 Assistant Professor, California Institute of Technology
2006 Professor, California Institute of Technology

研究内容:生理活性化合物の全合成研究・反応開発

論文の概要

10のビスイソキノリン骨格をイソキノリン78のクロスカップリングから合成した。各ユニットの詳細な合成はここでは割愛する。著者らはFagnouらが報告したC–Hカップリング反応を改良した条件において7および8のカップリングが効率的に進行することを見出し、ビスイソキノリン10を高収率で合成した(2)。このC–H結合活性化は9のような遷移状態を経て進行すると推測されている。続いて、B環上のメチル基およびD環上のメチレン基の選択的酸化反応を行うことで11を合成した。次にB, D環のエナンチオ選択的水素化を行った。Ciba-Geigy社で開発されたイリジウム触媒とキラル配位子15を組み合わせる条件を用いることで水素化反応、続くラクタム形成が効率的に進行し、高収率・高立体選択性で14を得た。その後A, E環の酸化などを経て5工程で1の全合成を達成した。また、1のヒドロキシ基のアセチル化およびシアノ基のヒドロキシ化を行うことで2を合成した。生合成模倣から離れたクロスカップリングおよび不斉水素化を用いた本合成手法により、bis-THIQ骨格をもつ天然物やその誘導体への新たな合成アプローチが可能になると考えられる。

図2. Stoltzらの(–)-jorunnamycin A, (–)-jorumycinの合成経路

参考文献

  1. Chrzanowska, M.; Grajewska, A.; Rozwadowska, D. M. Chem. Rev. 2016, 116, 12369. DOI: 1021/acs.chemrev.6b00315
  2. Campeau, L. C.; Schipper, D. J; Fagnou, K. J. Am. Chem.Soc. 2008, 130, 3266. DOI: 1021/ja710451s
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第24回ACSグリーンケミストリー&エンジニアリング会…
  2. 良質な論文との出会いを増やす「新着論文リコメンデーションシステム…
  3. 大学入試のあれこれ ②
  4. iPhone/iPodTouchで使える化学アプリケーション 【…
  5. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ④
  6. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾…
  7. Wileyより2つのキャンペーン!ジャーナル無料進呈と書籍10%…
  8. ケムステも出ます!サイエンスアゴラ2013

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 岩村 秀 Hiizu Iwamura
  2. バートン・ザード ピロール合成 Barton-Zard Pyrrole Synthesis
  3. カフェイン caffeine
  4. 「社会との関係を見直せ」とはどういうことか
  5. 岩澤 伸治 Nobuharu Iwasawa
  6. 光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応
  7. 第129回―「環境汚染有機物質の運命を追跡する」Scott Mabury教授
  8. ポメランツ・フリッチュ イソキノリン合成 Pomeranz-Fritsch Isoquinoline Synthesis
  9. 有機トリフルオロボレート塩 Organotrifluoroborate Salt
  10. シンガポールへ行ってきた:NTUとNUS化学科訪問

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

Chem-Station Twitter

PAGE TOP