[スポンサーリンク]

化学者のつぶやき

リガンド革命

[スポンサーリンク]

革命在る時、戦あり

 

様々な活性種の安定化・単離や触媒能の飛躍的向上に貢献してきた数々の立体保護基や配位子。一通り、出揃った感のある立体保護基や配位子、その大半は炭素骨格を主としています。

ところがここ最近、このリガンド開発業界に大きな変化が起こりつつあること、お気づきでしょうか?

活性種の安定化に欠かせない速度論的安定化効果を持つ立体保護基。また、触媒サイクルにおいて基質及び遷移状態の選択性や還元的脱離段階の促進に貢献する嵩高い配位子。置換基や配位子として使えそうな骨格はほぼ出尽くしたかのように思えた近年、まこと密やかに徐々に勢力を伸ばしつつあるあらたな骨格群があります。
それはずばり、「カルボラン!」。

まずは簡単にカルボランについて。カルボランとは、ホウ素を主とする20面体構造を持つクラスター。電荷を持たないカルボランは炭素原子二つとホウ素原子10個から骨格が成り、炭素の位置によって、オルト、メタ、パラ、が存在します(下図)。

rk03312013-1.gif
炭素原子上のHは、塩基で脱プロトン化することでカルボアニオンを発生させることができるため、様々な官能基を容易に導入することができます。一方、ホウ素上も種々のアプローチで官能基化することが可能です [1]-[3]。

まずはNature Chemistryからこの論文。

A. M. Spokoyny, C. W. Machan, D. J. Clingerman, M. S. Rosen, M. J. Wiester, R. D. Kennedy, C. L. Stern, A. A. Sarjeant, C. A. Mirkin
Nature Chemistry, 2011, 3, 509. doi:10.1038/nchem.1088.

この論文中で著者らは、m-カルボランの炭素もしくはホウ素原子上をチオエーテル(RS-)で置換した配位子 1a及び1bを合成し、それらを用いた白金錯体を合成することで、カルボラン置換配位子の電子的性質を明らかにしています(下図)。
rk03312013-2.gif
2015-08-01_10-16-23
カルボランのホウ素頭頂部位がチオエーテルに置換した配位子1aの場合、Pt(cod)Cl2との反応においてリン・硫黄原子両方が白金上に配位した錯体2aが得られています。そこへさらに当量の配位子2aを加えると、自発的に一つの塩素がフリーなカウンターアニオンとなった錯体3aが得られます。さらに二つの塩素をBF4で置換すると、二つの1aが二座配位した錯体4aを与えます。

一方、カルボランの炭素頭頂部位がチオエーテルに置換した配位子1bの場合、Pt(cod)Cl2との反応ではリン側のみが白金に配位し、二つの1bが単座で配位した錯体2bが得られてきます。白金上の塩素をより配位性の低いB(C6F5)4やBF4で置き換えることによってのみ、キレート型の錯体3b及び4bを得ることができます。

これら配位力の差は、結合するカルボラン頭頂原子の違いによって、硫黄部位の電子的性質が大きく変化したことに起因します。すなわち、炭素頭頂部位で置換するよりも「ホウ素頭頂部位で置換するとより電子供与性になる」ことを実証しています。同じカルボラン骨格でも、置換部位によって電子的性質がことなることを示す、興味深い成果です。

次にこの論文

N. Fey, M. F. Haddow, R. Mistry, N. C. Norman, A. G. Orpen, T. J. Reynold, P. G. Pringle,
Organometallics, 2012, 31, 2907. doi:10.1021/om201198s.

こちらでは、o-カルボランを直接リン上に置換した配位子を用いて、PdとRu錯体を合成しています。
いずれの場合も立体的な嵩高さから、カルボラン上の一つのB-H結合が金属中心と反応してしまい、LX型の二座配位子を持つ錯体が得られています。

om-2011-01198s_0012

 

実はこの結果、とても重要なポイントを示していると思います。
まず、カルボラン骨格が、金属周りの空間まで立体的インパクトを与えているということ。そして、どんなに精密設計された置換基や配位子を開発したところで、それらを用いて実際に合成した化合物が、リガンドそのものを壊してしまう可能性があるということ。経験ありませんか?遷移金属錯体を用いた触媒サイクルにおいて、配位子を巻き込んだ失活過程をよく目にすることと思います。高酸化/電子不足状態もしくは低配位の金属へのC-H挿入や置換基の転移などがその一例。その過程を防ぐことができれば、より優れたリガンドたり得ることは間違いありません。

さて。二十面体骨格を持つカルボランは、電子的にも立体的にも特徴的なクラスターであるということがわかると思いますが、カルボランと言えば、忘れはいけないのが「最強の酸を生み出す共役塩基 !」[4] そう、カルボランは、骨格に含まれる炭素の数によって、電気中性(炭素二つ)、モノアニオン性(炭素一つ)、ジアニオン性(炭素ゼロ)となる性質をも持っています。
そこで最後に紹介したいのが、この論文

V. Lavallo, J. H. Wright II, F. S. Tharm, S. Quinlivan, Angew. Chem. Int. Ed. 2013 ASAP doi:10.1002/anie.201209107.

著者らはアニオン性のパークロロカルボランをリン配位子に組み込み、それを用いた金触媒の開発を行っています。

特徴を何点か。
(1)まず、でかい!パークロロカルボランのファンデルワールス体積は350Å3とアダマンチル基(136Å3)の二倍以上!
(2)表面が塩素原子のブランケットで覆われているため、求核・求電子攻撃に対し非常~に安定 上述の論文のようなリガンドの分解(=触媒の失活)を抑制できる。
(3)アニオン電荷を保持しているため 通常のように金属上からのハロゲン引き抜きにより活性化する必要がないのと同時に、金属上からの配位子の乖離を防ぐ(カチオンを安定化する)ことができる。

2015-08-01_10-20-51配位子の嵩高さ及び安定性と、分子内電荷分離により金まわりがカチオン性(ルイス酸として触媒活性)であることを活かして、0.001 mol%といった極めて少量の錯体を用いて、アルキンのヒドロアミノ化触媒反応を達成しています。その触媒回転率、なんとTON = >95000!。

これまでは、主に活性カチオン種のカウンターアニオンとしての利用が常識だったハロゲン化カルボランですが、カルボランそのものを分子に組み込むことで、非常に安定かつ活性種によって分解されない化合物の合成が可能であることを実証しています。

またハロゲン化カルボランはなにも塩素置換だけではなく、フッ素や臭素置換、そして二種ハロゲン混合体も存在します。つまり、サイズを思い通り変えることができるんですね。しかも導入するカルボランのタイプ(o-/m-/p-、中性/アニオン性)とその組み合わせ、分子デザインによっては中性・アニオン性・ジアニオン~マルチアニオン性といった電子的性質を幅広く展開でき、カチオン種を安定化(もしくはこれまで不可能であった低配位化合物・高酸化状態金属中心等を安定化)し得る新規な置換基・配位子群を開発できる可能性を示していると思います。

史上最強の酸を生み出す化合物の新たな展開。究極のリガンド革命が起こりつつある、そんな気がします。

 

参考文献

  1.  Matthias Scholz, Evamarie Hey-Hawkins, Chem. Rev. 2011, 111, 7035, doi:org/10.1021/cr200038x.
  2. C. Reed, Account of Chemical Research, 2010, 43, 121, doi:10.1021/ar900159e.
  3. Stefanie Korbe, Peter J. Schreiber, Josef Michl, Chem. Rev. 2006, 106, 5208, doi:10.1021/cr050548u.
  4.  (1) 有機化学美術館: 「史上最強の酸」、合成さる。(2) 化学よもやま話

 

参考図書

 

関連記事

  1. 【好評につき第二弾】Q&A型ウェビナー マイクロ波化学…
  2. 第35回ケムステVシンポ「有機合成が拓く最先端糖化学」を開催しま…
  3. 反応中間体の追跡から新反応をみつける
  4. 【書籍】研究者の仕事術~プロフェッショナル根性論~
  5. Merck Compound Challengeに挑戦!【エント…
  6. 水素結合水H4O
  7. ポリマーを進化させる!機能性モノマーの力
  8. 書店で気づいたこと ~電気化学の棚の衰退?~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 最強の文献管理ソフトはこれだ!
  2. 糖鎖を化学的に挿入して糖タンパク質を自在に精密合成
  3. 徹底比較 特許と論文の違い ~その他編~
  4. 有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PNNP四座配位子・π共役系有機分子・フェンタニル混入ヘロイン・プロオリゴ型核酸医薬
  5. フィリップ・イートン Phillip E. Eaton
  6. 金属イオン認識と配位子交換の順序を切替えるホスト分子
  7. アメリカ大学院留学:博士候補生になるための関門 Candidacy
  8. 世界5大化学会がChemRxivのサポーターに
  9. アントンパール 「Monowave300」: マイクロ波有機合成の新武器
  10. 第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?

みなさんは現在どのようなもので授業ノートを取っていますでしょうか。私が学生だったときには電子…

化学者のためのWordマクロ -Supporting Informationの作成作業効率化-

「化合物データの帰属チェックリスト、見やすいんですが、もっと使いやすくならないですか」ある日、ラ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP