[スポンサーリンク]

化学者のつぶやき

リガンド革命

[スポンサーリンク]

革命在る時、戦あり

 

様々な活性種の安定化・単離や触媒能の飛躍的向上に貢献してきた数々の立体保護基や配位子。一通り、出揃った感のある立体保護基や配位子、その大半は炭素骨格を主としています。

ところがここ最近、このリガンド開発業界に大きな変化が起こりつつあること、お気づきでしょうか?

活性種の安定化に欠かせない速度論的安定化効果を持つ立体保護基。また、触媒サイクルにおいて基質及び遷移状態の選択性や還元的脱離段階の促進に貢献する嵩高い配位子。置換基や配位子として使えそうな骨格はほぼ出尽くしたかのように思えた近年、まこと密やかに徐々に勢力を伸ばしつつあるあらたな骨格群があります。
それはずばり、「カルボラン!」。

まずは簡単にカルボランについて。カルボランとは、ホウ素を主とする20面体構造を持つクラスター。電荷を持たないカルボランは炭素原子二つとホウ素原子10個から骨格が成り、炭素の位置によって、オルト、メタ、パラ、が存在します(下図)。

rk03312013-1.gif
炭素原子上のHは、塩基で脱プロトン化することでカルボアニオンを発生させることができるため、様々な官能基を容易に導入することができます。一方、ホウ素上も種々のアプローチで官能基化することが可能です [1]-[3]。

まずはNature Chemistryからこの論文。

A. M. Spokoyny, C. W. Machan, D. J. Clingerman, M. S. Rosen, M. J. Wiester, R. D. Kennedy, C. L. Stern, A. A. Sarjeant, C. A. Mirkin
Nature Chemistry, 2011, 3, 509. doi:10.1038/nchem.1088.

この論文中で著者らは、m-カルボランの炭素もしくはホウ素原子上をチオエーテル(RS-)で置換した配位子 1a及び1bを合成し、それらを用いた白金錯体を合成することで、カルボラン置換配位子の電子的性質を明らかにしています(下図)。
rk03312013-2.gif
2015-08-01_10-16-23
カルボランのホウ素頭頂部位がチオエーテルに置換した配位子1aの場合、Pt(cod)Cl2との反応においてリン・硫黄原子両方が白金上に配位した錯体2aが得られています。そこへさらに当量の配位子2aを加えると、自発的に一つの塩素がフリーなカウンターアニオンとなった錯体3aが得られます。さらに二つの塩素をBF4で置換すると、二つの1aが二座配位した錯体4aを与えます。

一方、カルボランの炭素頭頂部位がチオエーテルに置換した配位子1bの場合、Pt(cod)Cl2との反応ではリン側のみが白金に配位し、二つの1bが単座で配位した錯体2bが得られてきます。白金上の塩素をより配位性の低いB(C6F5)4やBF4で置き換えることによってのみ、キレート型の錯体3b及び4bを得ることができます。

これら配位力の差は、結合するカルボラン頭頂原子の違いによって、硫黄部位の電子的性質が大きく変化したことに起因します。すなわち、炭素頭頂部位で置換するよりも「ホウ素頭頂部位で置換するとより電子供与性になる」ことを実証しています。同じカルボラン骨格でも、置換部位によって電子的性質がことなることを示す、興味深い成果です。

次にこの論文

N. Fey, M. F. Haddow, R. Mistry, N. C. Norman, A. G. Orpen, T. J. Reynold, P. G. Pringle,
Organometallics, 2012, 31, 2907. doi:10.1021/om201198s.

こちらでは、o-カルボランを直接リン上に置換した配位子を用いて、PdとRu錯体を合成しています。
いずれの場合も立体的な嵩高さから、カルボラン上の一つのB-H結合が金属中心と反応してしまい、LX型の二座配位子を持つ錯体が得られています。

om-2011-01198s_0012

 

実はこの結果、とても重要なポイントを示していると思います。
まず、カルボラン骨格が、金属周りの空間まで立体的インパクトを与えているということ。そして、どんなに精密設計された置換基や配位子を開発したところで、それらを用いて実際に合成した化合物が、リガンドそのものを壊してしまう可能性があるということ。経験ありませんか?遷移金属錯体を用いた触媒サイクルにおいて、配位子を巻き込んだ失活過程をよく目にすることと思います。高酸化/電子不足状態もしくは低配位の金属へのC-H挿入や置換基の転移などがその一例。その過程を防ぐことができれば、より優れたリガンドたり得ることは間違いありません。

さて。二十面体骨格を持つカルボランは、電子的にも立体的にも特徴的なクラスターであるということがわかると思いますが、カルボランと言えば、忘れはいけないのが「最強の酸を生み出す共役塩基 !」[4] そう、カルボランは、骨格に含まれる炭素の数によって、電気中性(炭素二つ)、モノアニオン性(炭素一つ)、ジアニオン性(炭素ゼロ)となる性質をも持っています。
そこで最後に紹介したいのが、この論文

V. Lavallo, J. H. Wright II, F. S. Tharm, S. Quinlivan, Angew. Chem. Int. Ed. 2013 ASAP doi:10.1002/anie.201209107.

著者らはアニオン性のパークロロカルボランをリン配位子に組み込み、それを用いた金触媒の開発を行っています。

特徴を何点か。
(1)まず、でかい!パークロロカルボランのファンデルワールス体積は350Å3とアダマンチル基(136Å3)の二倍以上!
(2)表面が塩素原子のブランケットで覆われているため、求核・求電子攻撃に対し非常~に安定 上述の論文のようなリガンドの分解(=触媒の失活)を抑制できる。
(3)アニオン電荷を保持しているため 通常のように金属上からのハロゲン引き抜きにより活性化する必要がないのと同時に、金属上からの配位子の乖離を防ぐ(カチオンを安定化する)ことができる。

2015-08-01_10-20-51配位子の嵩高さ及び安定性と、分子内電荷分離により金まわりがカチオン性(ルイス酸として触媒活性)であることを活かして、0.001 mol%といった極めて少量の錯体を用いて、アルキンのヒドロアミノ化触媒反応を達成しています。その触媒回転率、なんとTON = >95000!。

これまでは、主に活性カチオン種のカウンターアニオンとしての利用が常識だったハロゲン化カルボランですが、カルボランそのものを分子に組み込むことで、非常に安定かつ活性種によって分解されない化合物の合成が可能であることを実証しています。

またハロゲン化カルボランはなにも塩素置換だけではなく、フッ素や臭素置換、そして二種ハロゲン混合体も存在します。つまり、サイズを思い通り変えることができるんですね。しかも導入するカルボランのタイプ(o-/m-/p-、中性/アニオン性)とその組み合わせ、分子デザインによっては中性・アニオン性・ジアニオン~マルチアニオン性といった電子的性質を幅広く展開でき、カチオン種を安定化(もしくはこれまで不可能であった低配位化合物・高酸化状態金属中心等を安定化)し得る新規な置換基・配位子群を開発できる可能性を示していると思います。

史上最強の酸を生み出す化合物の新たな展開。究極のリガンド革命が起こりつつある、そんな気がします。

 

参考文献

  1.  Matthias Scholz, Evamarie Hey-Hawkins, Chem. Rev. 2011, 111, 7035, doi:org/10.1021/cr200038x.
  2. C. Reed, Account of Chemical Research, 2010, 43, 121, doi:10.1021/ar900159e.
  3. Stefanie Korbe, Peter J. Schreiber, Josef Michl, Chem. Rev. 2006, 106, 5208, doi:10.1021/cr050548u.
  4.  (1) 有機化学美術館: 「史上最強の酸」、合成さる。(2) 化学よもやま話

 

参考図書

[amazonjs asin=”4882319551″ locale=”JP” title=”ホウ素・ホウ化物および関連物質の基礎と応用 (新材料・新素材シリーズ)”]

 

関連記事

  1. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン P…
  2. とある農薬のはなし「クロロタロニル」について 
  3. 特許にまつわる初歩的なあれこれ その1
  4. シクロプロパンの数珠つなぎ
  5. 【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動…
  6. 誤解してない? 電子の軌道は”軌道”では…
  7. 【イベント】「化学系学生のための企業研究セミナー」「化学系女子学…
  8. 第94回日本化学会付設展示会ケムステキャンペーン!Part II…

注目情報

ピックアップ記事

  1. 田辺製薬、エイズ関連治療薬「バリキサ錠450mg」を発売
  2. 小坂田 耕太郎 Kohtaro Osakada
  3. 原子間力顕微鏡 Atomic Force Microscope (AFM)
  4. シリコンバレーへようこそ! ~JBCシリコンバレーバイオ合宿~
  5. フラーレン:発見から30年
  6. トビン・マークス Tobin J. Marks
  7. 春季ACSMeetingに行ってきました
  8. 手術中にガン組織を見分ける標識試薬
  9. 有機配位子による[3]カテナンの運動性の多状態制御
  10. マイクロ波加熱を用いた省エネ・CO2削減精製技術によりベリリウム鉱石の溶解に成功

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP