[スポンサーリンク]

スポットライトリサーチ

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

[スポンサーリンク]

 

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究室) 助教の神保 晴彦さんにお願いしました。

植物や微細藻類が産生する脂肪酸は、脱炭素社会の実現を目指す動きが世界的に活発化する中でバイオ燃料の原料として注目が集まっています。光合成微細藻類による脂肪酸産生は世界各地で活発に研究が行われていますが、産生される種々の脂肪酸のうち多価不飽和脂肪酸が光合成を阻害する点は、増産における課題となっていました。今回、神保さん達はこの光合成阻害における分子メカニズムの解明に挑みました。

生物学の謎に化学の力で切り込んだ本研究の成果は、International Journal of Molecular Sciences原著論文、およびプレスリリースに公開されています。

 

“Specific incorporation of polyunsaturated fatty acids into the sn-2 position of phosphatidylglycerol accelerates photodamage to photosystem II under strong light”

Haruhiko Jimbo*, Koki Yuasa, Kensuke Takagi, Takashi Hirashima, Sumie Keta, Makiko Aichi, Hajime Wada

International Journal of Molecular Sciences, 2021, 22, 10432

DOI : 10.3390/ijms221910432

 

和田・神保研究室の和田 元 教授から、神保さんについて以下のコメントを頂いています。これからの研究成果も目が離せなさそうです!

私達の研究室では、光合成生物における脂質の生合成や生理機能について、長年に渡って研究していますが、神保さんは3年前に研究室のメンバーとして加わり、光合成の研究に携わっていた経験を活かして、脂質の視点から光合成の光阻害(強光ストレスによって活性が低下する現象)などの現象の分子機構について解析を行なっています。今回紹介したのは、その研究成果の一部で、短期間に脂質の様々な重要な働きを次々と明らかにしており、今後の研究の発展が非常に楽しみです。

 

身近な生き物が持つ分子メカニズムを知ることで、いつもと少し違う景色が見えてくる、かもしれません。それではインタビューをお楽しみください!

 

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

多価不飽和脂肪酸(PUFA: Poly-Unsaturated Fatty Acids)が、光合成生物の生育を阻害する分子メカニズムを解明しました。

α-リノレン酸やリノール酸に代表されるPUFAは、動物の成長・生存に必須の脂肪酸です。PUFAは、光合成生物である植物や藻類・シアノバクテリアに多く含まれています。これまでに、α-リノレン酸やリノール酸を、細胞外から光合成生物に添加すると急速に光合成活性が低下して、死滅してしまうことがわかっていますが、その分子メカニズムは不明でした。本研究では、異なる二重結合の数・位置・シス/トランス結合といった多様な分子構造を持つ不飽和脂肪酸をケミカルライブラリとしたケミカルバイオロジーを活用して、光合成の強光耐性への影響を解析しました。その結果、PUFAが光合成膜脂質の一種であるホスファチジルグリセロール(PG)のsn-2位に特異的に取り込まれることで、光合成複合体の一つである光化学系IIを不安定化し、光合成活性を阻害してしまうことが明らかとなりました。今後は、PUFAを分子基盤として、光合成活性を効率的に阻害する新規の脂肪酸分子種を開発することで、新規農薬や赤潮・アオコの防除薬の開発が期待されます。

 

図1.α-リノレン酸はPGのsn-2に特異的に取り込まれ、光合成複合体の不安定化と不活性化を引き起こす。

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

工夫した点は、不飽和脂肪酸において異なる二重結合の数・位置・シス/トランス結合を細かく設定して、解析した点です。種類が増えるほどサンプル数が多くなるので、実験が大変ですが、より詳細に化学的な構造が光合成に与える影響を考察することができました。また、思い入れのあるところは、PUFAがPGのsn-2位に特異的に取り込まれることを発見した結果です。この結果は、別の研究テーマで得られていた結果(論文準備中)を強力にサポートする結果であり、一つ一つのピースがはまっていくような感覚を覚え、興奮したのを覚えています。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

解析を進める中で、添加した遊離脂肪酸が膜脂質の1つとTLC上でぴったり重なってしまうことに気がつき、それまでの結果を全て取り直すことになってしまいました。脂肪酸の誘導体化には、これまで当研究室で長年用いられてきた、脂肪酸と膜脂質の両方を誘導体化する塩化水素-メタノール法を用いて解析していましたが、文献を漁り、別の誘導体化法である水酸化カリウム-メタノール法を用いることで、膜脂質だけを分析することができました。

 

Q4. 将来は化学とどう関わっていきたいですか?

これまで遺伝学や生理学・生化学の手法を用いて研究を進めていた私にとって、今回のように化学的な手法を用いて光合成に向き合ったのは初めてで、多くの困難がありました。生物学的な観点からすれば、この研究が何を意味するのかはまだ明確な答えがありませんし、化学的な視点から見てももっと詰めるべき点が合うように思います。しかし、今回の解析を通して、化学的な手法を用いることで、これまで、遺伝学や生理学・生化学ではわからなかった、詳細な化学構造が生物に与える影響について明らかにすることが出来ました。生物学を基礎として、化学的な手法・考察を頭に据えて研究を進めることで、今後の研究が発展すると期待しています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします

本研究は、論文にする途中で多くの挫折がありました。特に、脂肪酸を外から添加するという、人工的な条件で光合成を解析するのには何の意味があるのかということは、他の研究者やレビュアーから指摘を受けました。しかし、私はどんな研究でも意味がないものはなく、他の研究との組み合わせや、技術革新によって、再考される研究成果は数多くあると思っています。私自身も、本結果が今後どのような成果とともに世界を変えていくのか非常に楽しみです。

 

研究者の略歴

神保 晴彦(ジンボ ハルヒコ)

東京大学大学院総合文化研究科生命環境科学系

研究テーマ:光合成修復の分子機構解明、細胞小器官間シグナリング

 

関連リンク

researchmap: 神保 晴彦(ジンボ ハルヒコ)

researchmap: 和田 元(ワダ ハジメ)

 

Avatar photo

Shirataki

投稿者の記事一覧

目には見えない生き物の仕組みに惹かれ、生体分子の魅力を探っていこうとしています。ポスドクや科学館スタッフ、大学発ベンチャー研究員などを経て放浪中。

関連記事

  1. 東京大学大学院理学系研究科化学専攻 大学院入試情報
  2. ウイルスーChemical Times 特集より
  3. スポンジシリーズがアップデートされました。
  4. 炭素ー炭素結合を切る触媒
  5. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~…
  6. 炭素置換Alアニオンの合成と性質の解明
  7. ゴードン会議に参加して:ボストン周辺滞在記 Part II
  8. MEDCHEM NEWS 31-1号「低分子創薬」

注目情報

ピックアップ記事

  1. 氷河期に大量のメタン放出 十勝沖の海底研究で判明
  2. フェン・チャン Feng Zhang
  3. 製薬会社のテレビCMがステキです
  4. Dead Endを回避せよ!「全合成・極限からの一手」④
  5. ジェフリー・ムーア Jeffrey S. Moore
  6. 改正 研究開発力強化法
  7. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  8. 金触媒で変身できるEpoc保護基の開発
  9. 血液―脳関門透過抗体 BBB-penetrating Antibody
  10. 2009年10大分子発表!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP