[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (3)

[スポンサーリンク]

 「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第2回で紹介した金属エノラート法は、古典的条件の各種問題(交差反応化、立体制御、不可逆反応化、第1回記事参照)の解決に大きく貢献し、アルドール反応の使い勝手を飛躍的に向上させた。

この次なる課題とされたのは、立体中心を制御しつつ鏡像異性体の一方だけを選択的に作る方法、即ち不斉アルドール反応の開発である。

そこで研究者たちは、キラル補助基を持つエノラート基質を反応させ、ジアステレオ選択的に立体制御を行う方法をまず考え出した。第3回ではこの方法について紹介したい。

キラル補助基不斉アルドール反応の決定版:Evansアルドール反応

キラル補助基法における歴史的なブレイクスルーとなったのはMITの正宗悟らの報告だが、その後ハーバード大学のDavid A. Evansらによって、アミノ酸由来のオキサゾリジノン補助基を使う手法(Evansアルドール反応)が開発された。この手法は条件も穏和で信頼性が大変高く、ほぼどのような基質でもsyn-アルドール体を与えることが知られている。(図1)

図1: Evansアルドール反応 (青で示した部分がキラル補助基)

図1: Evansアルドール反応 (青で示した部分がキラル補助基)

高選択性の理由を理解するにあたって、いくつかのポイントがある。ボロントリフラート(ルイス酸)によって活性化されたイミドα位プロトンが、アミンによって引き抜かれてホウ素エノラートが生成する。この際、キラル補助基との立体反発のために、Zのホウ素エノラートが優位に生成してくる。このZ-ホウ素エノラートとアルデヒドが6員環遷移状態をとって反応し、syn体の生成物を与える。遷移状態において、キラル補助基はカルボニル基同士の双極子反発を避けるため、図2の[ ]内に示す方向を向いた状態で反応すると考えられている。アルデヒドはかさ高いイソプロピル基とは逆面から近づく。

図2:Evansアルドール反応の反応機構

図2:Evansアルドール反応の反応機構

このキラル補助基は、各種官能基に容易に変換可能であるため実用性が高い。 図3に例を示す。

図3:キラル補助基の変換例

図3:キラル補助基の変換例

Evansアルドール反応では決まった立体配置(syn体)しか得ることができないが、後に別の研究者によって変法が開発されており、現在では理論上考え得る全ての立体配置を同種の方法で生み出すことが出来るようになっている。

図4:Evansアルドール反応の各種変法

図4:Evansアルドール反応の各種変法

 

Evansアルドール反応の応用例

Evansアルドール反応は非常に信頼性が高く、大量合成にも適用可能で、立体化学の予測もしやすい。このため多くの複雑化合物合成に適用されてきた。不斉アリルホウ素化とならび、鎖状化合物の骨格構築+立体制御を行う目的には、現在でも定番的に使われる。図5はその応用例[1]であるが、ハイライトした不斉点と炭素-炭素結合は、Evansアルドール法にて構築されている。

図5:Evansアルドール反応を応用して全合成された天然物

図5:Evansアルドール反応を応用して全合成された天然物

ノバルティスのプロセス化学研究チームは、抗腫瘍活性天然物Discodermolide(13個の不斉点をもつ)の臨床試験への供給を意図し、60グラムもの量合成した[2]。この合成経路にて立体制御に強力な役割を果たしたのが、Evansアルドール反応である。最終的にはなんと25kgスケールでこの反応は実施されている。

図6:ノバルティスプロセスチームによるDiscodermolideの大スケール合成経路

図6:ノバルティスプロセスチームによるDiscodermolideの大量合成経路

本法の欠点を上げるとすれば、最終生成物に含まれないキラル補助基(これも別途合成が必要)が当量以上必要となってしまうために、トータルの原子効率や工程数の面で改善の余地があるということである。

次回はいよいよ、その問題解決を意図して研究されてきた、触媒的不斉アルドール反応について述べることにしよう。

関連文献

  1. Recent Review: Heravi, M. M.; Zadsirjan, V. Tetrahedron: Asymmetry 2013, 24, 1149. doi:10.1016/j.tetasy.2013.08.011
  2. Mickel, S. J. et al. Org. Process Res. Dev. 2004, 8, 92, 101, 107, 113 and 122.

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 今年の名古屋メダルセミナーはアツイぞ!
  2. 触媒なの? ?自殺する酵素?
  3. 偏光依存赤外分光でMOF薄膜の配向を明らかに! ~X線を使わない…
  4. 脂質ナノ粒子によるDDS【Merck/Avanti Polar …
  5. 有機合成化学協会誌2024年1月号:マイクロリアクター・官能基選…
  6. 付設展示会へ行こう!ーWiley編
  7. t-ブチルリチウムの発火事故で学生が死亡
  8. 酵素の真実!?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 山口健太郎 Kentaro Yamaguchi
  2. さよならGoogleリーダー!そして次へ…
  3. 第116回―「新たな分子磁性材料の研究」Eugenio Coronado教授
  4. 複数のイオン電流を示す人工イオンチャネルの開発
  5. こんなのアリ!?ギ酸でヒドロカルボキシル化
  6. 可視光を捕集しながら分子の結合を活性化するハイブリッド型ロジウム触媒
  7. バトラコトキシン (batrachotoxin)
  8. マーヴィン・カルザース Marvin H. Caruthers
  9. 第22回 化学の複雑な世界の源を求めてーLee Cronin教授
  10. デヴィッド・クレネマン David Klenerman

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP