[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (3)

[スポンサーリンク]

 「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第2回で紹介した金属エノラート法は、古典的条件の各種問題(交差反応化、立体制御、不可逆反応化、第1回記事参照)の解決に大きく貢献し、アルドール反応の使い勝手を飛躍的に向上させた。

この次なる課題とされたのは、立体中心を制御しつつ鏡像異性体の一方だけを選択的に作る方法、即ち不斉アルドール反応の開発である。

そこで研究者たちは、キラル補助基を持つエノラート基質を反応させ、ジアステレオ選択的に立体制御を行う方法をまず考え出した。第3回ではこの方法について紹介したい。

キラル補助基不斉アルドール反応の決定版:Evansアルドール反応

キラル補助基法における歴史的なブレイクスルーとなったのはMITの正宗悟らの報告だが、その後ハーバード大学のDavid A. Evansらによって、アミノ酸由来のオキサゾリジノン補助基を使う手法(Evansアルドール反応)が開発された。この手法は条件も穏和で信頼性が大変高く、ほぼどのような基質でもsyn-アルドール体を与えることが知られている。(図1)

図1: Evansアルドール反応 (青で示した部分がキラル補助基)

図1: Evansアルドール反応 (青で示した部分がキラル補助基)

高選択性の理由を理解するにあたって、いくつかのポイントがある。ボロントリフラート(ルイス酸)によって活性化されたイミドα位プロトンが、アミンによって引き抜かれてホウ素エノラートが生成する。この際、キラル補助基との立体反発のために、Zのホウ素エノラートが優位に生成してくる。このZ-ホウ素エノラートとアルデヒドが6員環遷移状態をとって反応し、syn体の生成物を与える。遷移状態において、キラル補助基はカルボニル基同士の双極子反発を避けるため、図2の[ ]内に示す方向を向いた状態で反応すると考えられている。アルデヒドはかさ高いイソプロピル基とは逆面から近づく。

図2:Evansアルドール反応の反応機構

図2:Evansアルドール反応の反応機構

このキラル補助基は、各種官能基に容易に変換可能であるため実用性が高い。 図3に例を示す。

図3:キラル補助基の変換例

図3:キラル補助基の変換例

Evansアルドール反応では決まった立体配置(syn体)しか得ることができないが、後に別の研究者によって変法が開発されており、現在では理論上考え得る全ての立体配置を同種の方法で生み出すことが出来るようになっている。

図4:Evansアルドール反応の各種変法

図4:Evansアルドール反応の各種変法

 

Evansアルドール反応の応用例

Evansアルドール反応は非常に信頼性が高く、大量合成にも適用可能で、立体化学の予測もしやすい。このため多くの複雑化合物合成に適用されてきた。不斉アリルホウ素化とならび、鎖状化合物の骨格構築+立体制御を行う目的には、現在でも定番的に使われる。図5はその応用例[1]であるが、ハイライトした不斉点と炭素-炭素結合は、Evansアルドール法にて構築されている。

図5:Evansアルドール反応を応用して全合成された天然物

図5:Evansアルドール反応を応用して全合成された天然物

ノバルティスのプロセス化学研究チームは、抗腫瘍活性天然物Discodermolide(13個の不斉点をもつ)の臨床試験への供給を意図し、60グラムもの量合成した[2]。この合成経路にて立体制御に強力な役割を果たしたのが、Evansアルドール反応である。最終的にはなんと25kgスケールでこの反応は実施されている。

図6:ノバルティスプロセスチームによるDiscodermolideの大スケール合成経路

図6:ノバルティスプロセスチームによるDiscodermolideの大量合成経路

本法の欠点を上げるとすれば、最終生成物に含まれないキラル補助基(これも別途合成が必要)が当量以上必要となってしまうために、トータルの原子効率や工程数の面で改善の余地があるということである。

次回はいよいよ、その問題解決を意図して研究されてきた、触媒的不斉アルドール反応について述べることにしよう。

関連文献

  1. Recent Review: Heravi, M. M.; Zadsirjan, V. Tetrahedron: Asymmetry 2013, 24, 1149. doi:10.1016/j.tetasy.2013.08.011
  2. Mickel, S. J. et al. Org. Process Res. Dev. 2004, 8, 92, 101, 107, 113 and 122.
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アリルC(Sp3)-H結合の直接的ヘテロアリール化
  2. パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への…
  3. Carl Boschの人生 その5
  4. 人工DNAから医薬をつくる!
  5. 化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学…
  6. 結晶格子の柔軟性制御によって水に強い有機半導体をつくる
  7. クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発…
  8. 夏休みの自由研究に最適!~家庭でできる化学実験7選~

注目情報

ピックアップ記事

  1. 有機電解合成プラットフォーム「SynLectro」
  2. 思わぬ伏兵・豚インフルエンザ
  3. ペプシとヒドラゾンが作る枝分かれフッ素化合物
  4. インドールの触媒的不斉ヒドロホウ素化反応の開発
  5. 小学2年生が危険物取扱者甲種に合格!
  6. セレンディピティ:思いがけない発見・発明のドラマ
  7. 「脱芳香族的二重官能基修飾化反応の研究」ーイリノイ大学David Sarlah研より
  8. 界面活性剤のWEB検索サービスがスタート
  9. トシルヒドラゾンを経由するカルボニル化合物の脱酸素ヒドロフッ素化反応によるフルオロアルカンの合成
  10. ノーベル化学賞解説 on Twitter

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

【産総研・触媒化学研究部門】新卒・既卒採用情報

触媒部門では、「個の力」でもある触媒化学を基盤としつつも、異分野に積極的に関わる…

触媒化学を基盤に展開される広範な研究

前回の記事でご紹介したとおり、触媒化学研究部門(触媒部門)では、触媒化学を基盤に…

「産総研・触媒化学研究部門」ってどんな研究所?

触媒化学融合研究センターの後継として、2025年に産総研内に設立された触媒化学研究部門は、「触媒化学…

Cell Press “Chem” 編集者 × 研究者トークセッション ~日本発のハイクオリティな化学研究を世界に~

ケムステでも以前取り上げた、Cell PressのChem。今回はChemの編集…

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP