[スポンサーリンク]

スポットライトリサーチ

フッ素をホウ素に変換する触媒 :簡便なPETプローブ合成への応用

[スポンサーリンク]

 

第24回のスポットライトリサーチは、理化学研究所 ライフサイエンス技術基盤研究センター(細谷分子標的化学研究チーム )の丹羽 節 博士にお願いしました。

細谷チームでは医薬品の体内動態を追えるPETプローブの開発に取り組んでいます。この機能に重要な役割を果たすのが、フッ素の同位体である18F。これを自在に組み込める化学変換はPETプローブの創製を加速する強力なツールとなります。しかし先日のスポットライトリサーチでも触れましたが、有機化合物中のフッ素を切ったり繋げたりは、そう簡単にできるわけではありません。加えて18Fは寿命が短く、崩壊ですぐ無くなってしまうのも問題です。

丹羽さんはご専門である金属触媒開発を武器に、この難題解決に取り組んでおられます。昨年公開されたその成果に関するプレスリリースがこの度公表され、これを契機として依頼させて頂きました。

“Ni/Cu-Catalyzed Defluoroborylation of Fluoroarenes for Diverse C–F Bond Functionalizations”
Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T. J. Am. Chem. Soc. 2015, 137, 14313. doi: 10.1021/jacs.5b10119

チームを率いておられる細谷孝充チームリーダーは丹羽さんをこう評しておられます。

丹羽研究員は、とにかく面白そうなこととビールが大好きな、化学で科学を推進できる研究者です。企画力が大変優れているとともに人望が厚く、現在所属しているセンターには身近に生物学研究者をはじめ、異分野の研究者が大勢いますが、彼・彼女らとを巻き込んで様々な共同研究(もちろん飲み会も)を主導しています。今後、オリジナリティーの高い有機化学をどんどん展開していくことでしょう。

分野が近い事情もあって、筆者も丹羽さんとは何度かお話させて頂いたことがあるのですが、芯のある考え方に裏付けられた巧みな語り口に毎度はっとさせられています。個人的にも期待を寄せている研究者の一人です。それでは今回のインタビューもお楽しみください!

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

PET(陽電子放射断層撮像)は、ヒトの体内でも分子を追跡できる、とても有用な分子イメージング技術の一つです。PETにはフッ素18のような、寿命の短い陽電子放射核種を導入したPETプローブが必要であり、そのための標識反応の開発が進んでいます。

一方で、標識反応の前駆体の合成は、時間がかかる、とても面倒な作業の一つです。ところが、やればできるというわけか、あまり問題視されていませんでした。この過程を何とか効率化できないかと企み、生物活性化合物のフッ素19を反応性官能基であるホウ素に置き換えることを狙いました。

試行錯誤の結果、ニッケルと銅の二種類の触媒を同時に用いることで、反応性が低いフッ化アレーン類の脱フッ素ホウ素化反応が進行することを見いだしました。この反応と、既知のフッ素18導入反応を組み合わせることで、含フッ素19医薬品自体を原料とし、二段階の化学変換でPETプローブを迅速に合成する手法を開発しました。

sr_T_Niwa_2

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

ニッケル触媒の交差カップリング反応の条件に、銅を添加したことでしょうか。これまでの研究例から、ボリル銅種を使えばホウ素化できるんじゃないかなと考えていましたが、一方で、低原子価ニッケルが銅で酸化されて、触媒が失活することも想像できました。実際にやってみると、都合よくホウ素化体が生成するわけですが、今となってはニッケルと銅の酸化還元がむしろ大切だろうという推論に行き着いており、不思議なものです。初めてホウ素化体を単離した時は収率が3%以下でしたが、すぐに細谷先生に伝えたことをよく覚えています。

 Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回の研究をOMCOS18(@Sitges, Spain)でポスター発表したところ、Organizerの1人であるProf. Martinのグループも脱フッ素ホウ素化をポスター発表することが判明しました(参考:Martin, R. et al. J. Am. Chem. Soc. 2015, 137, 12470)。この学会、予稿集が開会後に配布され、さらに予稿集の図が塗りつぶされていて読めず、ポスター発表の当日まで本当に内容がかぶっているのかわかりませんでしたが、僕の発表中にMartin研の発表者が議論に来て、状況が明らかになりました。会期中はポスターの前で一時間以上話していましたが、同じ脱フッ素ホウ素化とは言え、よく見ると、用いる試薬や反応機構、基質適用範囲など違う点が多く、議論自体は楽しかったです。ただ、そのせいで、Sitgesという快適な場所にいるにもかかわらず、全く落ち着かなかったです。結局、Martinらと打ち合わせて、同日(8月2日)投稿することになりました。

国際会議は異国の地で経験を積むいい機会ですが、離れた地の予備的研究の情報収集として極めて重要だと、改めて思い知りました。参加していなかったらどうなっていたことか・・・。

 

Q4. 将来は化学とどう関わっていきたいですか?

できる限り手を動かしながら、化学研究を楽しんでいきたいと思っています。やはり実験科学はデータが勝負どころなので、多くの人達とたくさんのデータを出し合いながら議論していられる環境にいたい(作っていきたい)と考えています。

また、理化学研究所に来てから医学・生物学者の方々と一緒に研究する機会も増え、化学で何か貢献できないものかといつも考えています。このように化学発信で異分野を革新したいと考えることは、現代の化学者の多くの方が考えられていることかと思いますが、いつか逆に、異分野の考え方や技術を活用して化学を拡げられたら、それも楽しいだろうなとも考えています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ずっと反応開発だけ興味を持って進めてきた僕が、理化学研究所に移り医学・生物学者と共同研究するとなった時に、色々な不安もありましたが、今となっては楽しい研究生活をおくれています。化学が貢献できそうなシーンも多く、新しい研究課題がたくさん見つかってきます。まだ我々は始まったばかりのチーム(2014年4月に細谷チーム発足)なので、手が届くところもまだ限られますが、もし読者の方の中にこのような境界領域に興味がある方がいれば、一度話しかけてもらえればと思います。異分野の役に立つ化学の姿を、少しは紹介できるかなと思います。

関連リンク

 

研究者の略歴

sr_T_Niwa_1

丹羽 節 (にわ たかし)

所属:理化学研究所 ライフサイエンス技術基盤研究センター 分子標的化学研究チーム 研究員

テーマ:有機反応開発を通じたケミカルバイオロジーの推進

略歴:1981年東京都生まれ。東京大学卒業後、2004年より同大学大学院理学系研究科修士課程へ進学(奈良坂紘一研究室)。2006年より京都大学大学院工学研究科博士後期課程へ進学(大嶌幸一郎研究室)。2008年より日本学術振興会特別研究員(DC2)。2009年3月に博士(工学)取得後、1年間、ハーバード大学Tobias Ritter研で博士研究員を務めた。2010年4月より早稲田大学先進理工学部化学・生命化学科で助教(中田雅久研究室)を務めた後、2013年4月より現職。2007年日本化学会第87春季年会・学生講演賞、2013年有機合成化学協会宇部興産研究企画賞、2015年日本化学会第95春季年会・優秀講演賞(学術)など。

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 光照射によって結晶と液体を行き来する蓄熱分子
  2. クロロラジカルHAT協働型C-Hクロスカップリングの開発
  3. 投票!2019年ノーベル化学賞は誰の手に!?
  4. 【速報】2010年ノーベル物理学賞に英の大学教授2人
  5. Reaxys体験レポート反応検索編
  6. 再生医療ーChemical Times特集より
  7. 「anti-マルコフニコフ型水和反応を室温で進行させる触媒」エー…
  8. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ラジカルと有機金属の反応を駆使した第3級アルキル鈴木―宮浦型カップリング
  2. 韓国へ輸出される半導体材料とその優遇除外措置について
  3. 英語発表に”慣れる”工夫を―『ハイブリッド型報告会』のススメ
  4. 2005年3月分の気になる化学関連ニュース投票結果
  5. 固体高分子電解質の基礎、材料技術と実用化【終了】
  6. 金よりも価値のある化学者の貢献
  7. 水素化ホウ素ナトリウム Sodium Borohydride
  8. 有機合成反応で乳がん手術を改革
  9. メリフィールド氏死去 ノーベル化学賞受賞者
  10. 肝はメチル基!? ロルカセリン

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況

当社のマイクロ波プラットフォーム技術および工業化知見を活用し、アクリル樹脂の分解に必要なエネルギーを…

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

ゼナン・バオ Zhenan Bao

ゼナン(Zhenan Bao, 1970年xx月xx日-)は、アメリカの有機材料科学者、カーボンナノ…

Chem-Station Twitter

PAGE TOP