[スポンサーリンク]

odos 有機反応データベース

スルホニル保護基 Sulfonyl Protective Group

概要

スルホニル基は、フェノールもしくはアミンの保護基として有用である。

アルコールをスルホニル化すれば脱離能が向上し、置換/脱離反応に活性となる。このため、脂肪族アルコール保護の目的に使われるケースは稀である。

一方で保護基の電子求引性を利用し、電子豊富フェノールの酸化防止目的で用いられることは多い。

アミンの保護には有効である。スルホンアミドとして保護すれば、アミンの求核性・塩基性をうまく抑えることができる。特に一級アミンを保護した場合には、スルホンアミドのN-Hプロトンの酸性度が十分高くなる。このため、光延反応アルキル化条件へと伏すことができ、二級アミン合成にも用いることができる。この目的においては、Tsに比べて脱保護容易なNs基がよく用いられる(福山アミン合成)。

置換基(R’)に応じて性質が異なるため、ケースバイケースで上手く選択することが求められる。

基本文献

  • Fischer, E.; Lipschitz, W. Ber. 1915, 48, 360.
  • Bordwell, F. G.; Boutan, P. J. J. Am. Chem. Soc. 1957, 79, 717. DOI: 10.1021/ja01560a059
  • Kampouris, E. M. J. Chem. Soc. 1965, 2651. DOI:10.1039/JR9650002651
  • Kabalka, G. W.; Varma, M.; Varma, R. S.; Srivastava, P. C.; Knapp, F. F. Jr. J. Org. Chem. 1986, 51, 2386. DOI: 10.1021/jo00362a044
  • Lei, X.; Jalla, A.; Shama, M. A. A.; Ctafford, J. M.; Cao, B. Synthesis 2015, 47, 1578. DOI: 10.1055/s-0034-1378867

反応例

<保護基の種類>

スルホニル保護基としては、以下のものが頻用される。

  • メタンスルホニル基 (methanesulfonyl, Ms)
  • p-トルエンスルホニル基 (toluenesulfonyl, Ts)
  • o-ニトロベンゼンスルホニル基 (nitrobenzenesulfonyl, Ns)
  • トリフルオロメタンスルホニル基 (trifluoromethanesulfonyl, Tf)

<保護>

Ms基とTs基では保護時の反応機構が異なる。活性種を効率的に生成する目的で、それぞれ性質の異なる塩基が用いられる。すなわち、Ms保護ではトリエチルアミン、Ts保護ではピリジン(もしくはDMAP-トリエチルアミン)を用いることが一般的である。Ns基もTs基と同様の条件で保護できる。

条件によってはCl置換が併発することがある。その場合には無水物(Ms2O・Ts2O)もしくはMe2N(CH2)nNMe2添加条件[1]を用いると良い。スズアセタール法を用いることで選択的なMs化・Ts化を行なうことも可能。

Tf保護にはTf2Oを用いることが一般的である[2]。塩基はEt3N、もしくはやや高価だが求核性のない2,6-(tBu)2-pyridineなどが候補となる。Tf2Oはエノール保護には適していない事が多く、溶媒にTHFを用いると重合が併発する問題がある。この場合には代替試薬として、より穏和な反応性をもつMcMurry試薬[3]・Comins試薬[4]が用いられる。

<脱保護>

スルホニル基は保護が容易である一方、脱保護は難しく、往々にして厳しめの条件が必要となる。ヒドリド還元、酸性条件、酸化条件、高熱条件に耐性がある一方で、強塩基性条件や1電子還元条件に不安定であるため、これが脱保護条件の選定方針になる。

Ms基については、メチル基C-Hの高い酸性度を活かした強ブレンステッド塩基脱保護条件が知られている[5-8]。この条件下では脂肪族メシラートや他種のスルホンアミドは維持される。

Ts基は一般に脱保護が難しく、熱KOH条件などの厳しい条件が必要となる。一電子還元条件であるMg/MeOH系[9]によって穏和に脱保護条件が行える。ただし本条件下ではTsアミドは脱保護されない。

Tsアミドはより強力な還元条件によって脱保護される。Ti(OiPr)4/TMSCl/Mg系[10]、SmI2/amine/water系[11]、Na-naphthalenide系[12]、Na-anthracenide系[13]などの条件が知られている。

変わり種としては、非常に求核力の強いリンアニオンで処理すると窒素上での求核反応が起こり、結果としてTsアミドの切断が生じることが知られている[14]。

フェノールのTf保護体はEt4NOH条件で簡便に脱保護可能である。メチルエステルやシリルエーテルなどは保持される[15]。

Ns基はチオラートの求核付加によって穏和な条件下脱保護できるため、合成化学的価値が特別に高い (福山アミン合成を参照)。

実験手順

アルコールのトシル化[16]

デシルアルコール(1.58 g、10 mmol)をクロロホルム(10 mL)に溶解し、氷浴(0 ℃)で冷却した後、ピリジン(1.62 mL、20 mmol)を加え、続いて塩化p-トルエンスルホニル (2.85 g、15mmol)を少しずつ撹拌しながら添加。反応は2.5時間で完了。 エーテル(30 mL)および水(7 mL)を添加し、有機層を2N HCl、5%NaHCO3水溶液および水で洗浄し、MgSO4で乾燥させた。 溶媒を減圧下で除去し、粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:2%エーテル/石油エーテル)によって精製し、目的物を油状物(3.06 g、98%)として得た。

参考文献

  1. Yoshida, Y.; Shimonishi, K.; Sakakura, Y.; Okada, S.; Aso, N.; Tanabe, Y. Synthesis 1999, 1633. DOI: 10.1055/s-1999-3561
  2. Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1973, 14, 3839. doi:10.1016/S0040-4039(01)87051-9
  3. (a) Hendrickson, J. B.; Bergeron, B.; Sternbach, D. D. Tetrahedron 1975, 31, 2517. doi:10.1016/0040-4020(75)80263-8 (b) McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24, 979. doi:10.1016/S0040-4039(00)81581-6 (c) Scott, W. J. Acc. Chem. Res. 1988, 21, 47. DOI: 10.1021/ar00146a001
  4. Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299. doi:10.1016/S0040-4039(00)60957-7
  5. Ritter, T.; Stanek, K.; Larrosa, I.; Carreira, E. M. Org. Lett. 2004, 6, 1513. DOI: 10.1021/ol049514j
  6. Kita, Y.; Toma, T.; Kan, T.; Fukuyama, T. Org. Lett. 2008, 10, 3251. doi:10.1021/ol801111r
  7. Mori, K.; Rikimaru, K.; Kan, T.; Fukuyama, T. Org. Lett. 2004, 6, 3095. doi:10.1021/ol048857e
  8. Naito, H.; Hata, T.; Urabe, H. Org. Lett. 2010, 12, 1228. DOI: 10.1021/ol100086j
  9. (a) Nyasse, B.; Ragnarsson, U. Chem. Commun. 1997, 1017. doi: 10.1039/A701408B (b) Sridhar, M.; Ashokkumar, B.; Narendar, R. Tetrahedron Lett. 1998, 39, 2847. doi:10.1016/S0040-4039(98)00314-1 (c) Alonso, D. A.; Andersson, P. G. J. Org. Chem. 1998, 63, 9455. doi:10.1021/jo9815296 (d) Pasupathy, K. Synlett 2003, 1942. DOI: 10.1055/s-2003-42033
  10. Shohji, N.; Kawaji, T.; Okamoto, S. Org. Lett. 2011, 13, 2626. DOI: 10.1021/ol200740r
  11. Ankner, T.; Hilmersson, G. Org. Lett. 2009, 11, 503. DOI: 10.1021/ol802243d
  12. Ji, S.; Gortler, L. B.; Waring, A.; Battisti, A. J.; Bank, S.; Closson, W. D.; Wriede, P. A. J. Am. Chem. Soc. 1967, 89, 5311. DOI: 10.1021/ja00996a055
  13. Quaal, K. S.; Ji, S.; Kim, Y. M.; Closson, W. D.; Zubieta, J. D. J. Org. Chem. 1978, 43, 1311. DOI: 10.1021/jo00401a005
  14. Yoshida, S.; Igawa, K.; Tomooka, K. J. Am. Chem. Soc. 2012, 134, 19358. DOI: 10.1021/ja309642r
  15. Ohgiya, T.; Nishiyama, S. Tetrahedron Lett. 2004, 45, 6317. doi:10.1016/j.tetlet.2004.06.104
  16. Kabalka, G. W.; Varma, M.; Varma, R. S.; Srivastava, P. C.; Knapp, F. F. Jr. J. Org. Chem. 1986, 51, 2386. DOI: 10.1021/jo00362a044

関連反応

関連書籍

 

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. 森田・ベイリス・ヒルマン反応 Morita-Baylis-Hil…
  2. エシュバイラー・クラーク反応 Eschweiler-Clarke…
  3. リーベスカインド・スローグル クロスカップリング Liebesk…
  4. ザンドマイヤー反応 Sandmeyer Reaction
  5. バートン・ザード ピロール合成 Barton-Zard Pyrr…
  6. P-キラルホスフィンの合成 Synthesis of P-chi…
  7. ペイン転位 Payne Rearrangement
  8. エッシェンモーザー・クライゼン転位 Eschenmoser-Cl…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始
  2. 化学 2005年7月号
  3. クルクミン /curcumin
  4. ニコラス反応 Nicholas Reaction
  5. テトラキス(トリフェニルホスフィン)パラジウム(0) : Tetrakis(triphenylphosphine)palladium(0)
  6. 徒然なるままにセンター試験を解いてみた(2018年版)
  7. プラスチック類の選別のはなし
  8. アルキンの水和反応 Hydration of Alkyne
  9. クルト・ヴュートリッヒ Kurt Wüthrich
  10. 3Mとはどんな会社?

関連商品

注目情報

注目情報

最新記事

Carl Boschの人生 その2

Tshozoです。前回の続き、早速参ります。筆者のフォルダが火を噴く動画集 おそらく現存…

トヨタ、世界初「省ネオジム耐熱磁石」開発

トヨタは、今後急速な拡大が予想される電動車に搭載される高出力モーターなど様々なモーターに使用されるネ…

触媒のチカラで拓く位置選択的シクロプロパン合成

嵩高いコバルト錯体を触媒として用いた位置選択的Simmons–Smith型モノシクロプロパン化反応が…

「原子」が見えた! なんと一眼レフで撮影に成功

An Oxford University student who captured an image…

2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

2月も後半となり、3月1日の就活解禁に向けて、2019年卒業予定の学生のみなさんは、就活モードが本格…

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前…

Chem-Station Twitter

PAGE TOP