[スポンサーリンク]

odos 有機反応データベース

スルホニル保護基 Sulfonyl Protective Group

[スポンサーリンク]

概要

スルホニル基は、フェノールもしくはアミンの保護基として有用である。

アルコールをスルホニル化すれば脱離能が向上し、置換/脱離反応に活性となる。このため、脂肪族アルコール保護の目的に使われるケースは稀である。

一方で保護基の電子求引性を利用し、電子豊富フェノールの酸化防止目的で用いられることは多い。

アミンの保護には有効である。スルホンアミドとして保護すれば、アミンの求核性・塩基性をうまく抑えることができる。特に一級アミンを保護した場合には、スルホンアミドのN-Hプロトンの酸性度が十分高くなる。このため、光延反応アルキル化条件へと伏すことができ、二級アミン合成にも用いることができる。この目的においては、Tsに比べて脱保護容易なNs基がよく用いられる(福山アミン合成)。

置換基(R’)に応じて性質が異なるため、ケースバイケースで上手く選択することが求められる。

基本文献

  • Fischer, E.; Lipschitz, W. Ber. 1915, 48, 360.
  • Bordwell, F. G.; Boutan, P. J. J. Am. Chem. Soc. 1957, 79, 717. DOI: 10.1021/ja01560a059
  • Kampouris, E. M. J. Chem. Soc. 1965, 2651. DOI:10.1039/JR9650002651
  • Kabalka, G. W.; Varma, M.; Varma, R. S.; Srivastava, P. C.; Knapp, F. F. Jr. J. Org. Chem. 1986, 51, 2386. DOI: 10.1021/jo00362a044
  • Lei, X.; Jalla, A.; Shama, M. A. A.; Ctafford, J. M.; Cao, B. Synthesis 2015, 47, 1578. DOI: 10.1055/s-0034-1378867

反応例

<保護基の種類>

スルホニル保護基としては、以下のものが頻用される。

  • メタンスルホニル基 (methanesulfonyl, Ms)
  • p-トルエンスルホニル基 (toluenesulfonyl, Ts)
  • o-ニトロベンゼンスルホニル基 (nitrobenzenesulfonyl, Ns)
  • トリフルオロメタンスルホニル基 (trifluoromethanesulfonyl, Tf)

<保護>

Ms基とTs基では保護時の反応機構が異なる。活性種を効率的に生成する目的で、それぞれ性質の異なる塩基が用いられる。すなわち、Ms保護ではトリエチルアミン、Ts保護ではピリジン(もしくはDMAP-トリエチルアミン)を用いることが一般的である。Ns基もTs基と同様の条件で保護できる。

条件によってはCl置換が併発することがある。その場合には無水物(Ms2O・Ts2O)もしくはMe2N(CH2)nNMe2添加条件[1]を用いると良い。スズアセタール法を用いることで選択的なMs化・Ts化を行なうことも可能。

Tf保護にはTf2Oを用いることが一般的である[2]。塩基はEt3N、もしくはやや高価だが求核性のない2,6-(tBu)2-pyridineなどが候補となる。Tf2Oはエノール保護には適していない事が多く、溶媒にTHFを用いると重合が併発する問題がある。この場合には代替試薬として、より穏和な反応性をもつMcMurry試薬[3]・Comins試薬[4]が用いられる。

<脱保護>

スルホニル基は保護が容易である一方、脱保護は難しく、往々にして厳しめの条件が必要となる。ヒドリド還元、酸性条件、酸化条件、高熱条件に耐性がある一方で、強塩基性条件や1電子還元条件に不安定であるため、これが脱保護条件の選定方針になる。

Ms基については、メチル基C-Hの高い酸性度を活かした強ブレンステッド塩基脱保護条件が知られている[5-8]。この条件下では脂肪族メシラートや他種のスルホンアミドは維持される。

Ts基は一般に脱保護が難しく、熱KOH条件などの厳しい条件が必要となる。一電子還元条件であるMg/MeOH系[9]によって穏和に脱保護条件が行える。ただし本条件下ではTsアミドは脱保護されない。

Tsアミドはより強力な還元条件によって脱保護される。Ti(OiPr)4/TMSCl/Mg系[10]、SmI2/amine/water系[11]、Na-naphthalenide系[12]、Na-anthracenide系[13]などの条件が知られている。

変わり種としては、非常に求核力の強いリンアニオンで処理すると窒素上での求核反応が起こり、結果としてTsアミドの切断が生じることが知られている[14]。

フェノールのTf保護体はEt4NOH条件で簡便に脱保護可能である。メチルエステルやシリルエーテルなどは保持される[15]。

Ns基はチオラートの求核付加によって穏和な条件下脱保護できるため、合成化学的価値が特別に高い (福山アミン合成を参照)。

実験手順

アルコールのトシル化[16]

デシルアルコール(1.58 g、10 mmol)をクロロホルム(10 mL)に溶解し、氷浴(0 ℃)で冷却した後、ピリジン(1.62 mL、20 mmol)を加え、続いて塩化p-トルエンスルホニル (2.85 g、15mmol)を少しずつ撹拌しながら添加。反応は2.5時間で完了。 エーテル(30 mL)および水(7 mL)を添加し、有機層を2N HCl、5%NaHCO3水溶液および水で洗浄し、MgSO4で乾燥させた。 溶媒を減圧下で除去し、粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:2%エーテル/石油エーテル)によって精製し、目的物を油状物(3.06 g、98%)として得た。

参考文献

  1. Yoshida, Y.; Shimonishi, K.; Sakakura, Y.; Okada, S.; Aso, N.; Tanabe, Y. Synthesis 1999, 1633. DOI: 10.1055/s-1999-3561
  2. Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1973, 14, 3839. doi:10.1016/S0040-4039(01)87051-9
  3. (a) Hendrickson, J. B.; Bergeron, B.; Sternbach, D. D. Tetrahedron 1975, 31, 2517. doi:10.1016/0040-4020(75)80263-8 (b) McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24, 979. doi:10.1016/S0040-4039(00)81581-6 (c) Scott, W. J. Acc. Chem. Res. 1988, 21, 47. DOI: 10.1021/ar00146a001
  4. Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299. doi:10.1016/S0040-4039(00)60957-7
  5. Ritter, T.; Stanek, K.; Larrosa, I.; Carreira, E. M. Org. Lett. 2004, 6, 1513. DOI: 10.1021/ol049514j
  6. Kita, Y.; Toma, T.; Kan, T.; Fukuyama, T. Org. Lett. 2008, 10, 3251. doi:10.1021/ol801111r
  7. Mori, K.; Rikimaru, K.; Kan, T.; Fukuyama, T. Org. Lett. 2004, 6, 3095. doi:10.1021/ol048857e
  8. Naito, H.; Hata, T.; Urabe, H. Org. Lett. 2010, 12, 1228. DOI: 10.1021/ol100086j
  9. (a) Nyasse, B.; Ragnarsson, U. Chem. Commun. 1997, 1017. doi: 10.1039/A701408B (b) Sridhar, M.; Ashokkumar, B.; Narendar, R. Tetrahedron Lett. 1998, 39, 2847. doi:10.1016/S0040-4039(98)00314-1 (c) Alonso, D. A.; Andersson, P. G. J. Org. Chem. 1998, 63, 9455. doi:10.1021/jo9815296 (d) Pasupathy, K. Synlett 2003, 1942. DOI: 10.1055/s-2003-42033
  10. Shohji, N.; Kawaji, T.; Okamoto, S. Org. Lett. 2011, 13, 2626. DOI: 10.1021/ol200740r
  11. Ankner, T.; Hilmersson, G. Org. Lett. 2009, 11, 503. DOI: 10.1021/ol802243d
  12. Ji, S.; Gortler, L. B.; Waring, A.; Battisti, A. J.; Bank, S.; Closson, W. D.; Wriede, P. A. J. Am. Chem. Soc. 1967, 89, 5311. DOI: 10.1021/ja00996a055
  13. Quaal, K. S.; Ji, S.; Kim, Y. M.; Closson, W. D.; Zubieta, J. D. J. Org. Chem. 1978, 43, 1311. DOI: 10.1021/jo00401a005
  14. Yoshida, S.; Igawa, K.; Tomooka, K. J. Am. Chem. Soc. 2012, 134, 19358. DOI: 10.1021/ja309642r
  15. Ohgiya, T.; Nishiyama, S. Tetrahedron Lett. 2004, 45, 6317. doi:10.1016/j.tetlet.2004.06.104
  16. Kabalka, G. W.; Varma, M.; Varma, R. S.; Srivastava, P. C.; Knapp, F. F. Jr. J. Org. Chem. 1986, 51, 2386. DOI: 10.1021/jo00362a044

関連反応

関連書籍

 

外部リンク

関連記事

  1. フィッシャー・スペイア エステル合成 Fischer-Speie…
  2. バナジル(アセチルアセトナト) Vanadyl(IV) acet…
  3. シャウ ピリミジン合成 Shaw Pyrimidine Synt…
  4. ポメランツ・フリッチュ イソキノリン合成 Pomeranz-Fr…
  5. NHPI触媒によるC-H酸化 C-H Oxidation wit…
  6. 【クリックは完了. よし壊せ!】イミノカルベノイドによる渡環およ…
  7. オレフィンメタセシス Olefin Metathesis
  8. ビンゲル反応 Bingel Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. メリークリスマス☆
  2. トビン・マークス Tobin J. Marks
  3. モンサント、住友化学 雑草防除で協力強化
  4. 理研の研究グループがアスパラガスの成分を分析、血圧降下作用があることを発見
  5. ジボラン(diborane)
  6. コーリー・フックス アルキン合成 Corey-Fuchs Alkyne Synthesis
  7. ケムステVシンポ、CSJカレントレビューとコラボします
  8. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  9. 【日産化学 23卒/Zoomウェビナー配信!】START your chemi-story あなたの化学をさがす 研究職限定 キャリアマッチングLIVE
  10. ホウ素でがんをやっつける!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応

有機合成化学協会が発行する有機合成化学協会誌、2023年3月号がオンライン公開されました。早…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

第2回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、4月21日(金)に第2…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2

前回のPart 1に引き続き第二弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較

開催日:2023/03/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1

待ちに待った対面での日本化学会春季年会。なんと4年ぶりなんですね。今年は…

グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応

第493回のスポットライトリサーチは、東京農工大学院 工学府生命工学専攻 生命有機化学講座(長澤・寺…

カーボンニュートラルへの化学工学: CO₂分離回収,資源化からエネルギーシステム構築まで

概要いま我々は,カーボンニュートラルの実現のために,最も合理的なエネルギー供給と利用の選…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP