[スポンサーリンク]

odos 有機反応データベース

スルホニル保護基 Sulfonyl Protective Group

[スポンサーリンク]

概要

スルホニル基は、フェノールもしくはアミンの保護基として有用である。

アルコールをスルホニル化すれば脱離能が向上し、置換/脱離反応に活性となる。このため、脂肪族アルコール保護の目的に使われるケースは稀である。

一方で保護基の電子求引性を利用し、電子豊富フェノールの酸化防止目的で用いられることは多い。

アミンの保護には有効である。スルホンアミドとして保護すれば、アミンの求核性・塩基性をうまく抑えることができる。特に一級アミンを保護した場合には、スルホンアミドのN-Hプロトンの酸性度が十分高くなる。このため、光延反応アルキル化条件へと伏すことができ、二級アミン合成にも用いることができる。この目的においては、Tsに比べて脱保護容易なNs基がよく用いられる(福山アミン合成)。

置換基(R’)に応じて性質が異なるため、ケースバイケースで上手く選択することが求められる。

基本文献

  • Fischer, E.; Lipschitz, W. Ber. 1915, 48, 360.
  • Bordwell, F. G.; Boutan, P. J. J. Am. Chem. Soc. 1957, 79, 717. DOI: 10.1021/ja01560a059
  • Kampouris, E. M. J. Chem. Soc. 1965, 2651. DOI:10.1039/JR9650002651
  • Kabalka, G. W.; Varma, M.; Varma, R. S.; Srivastava, P. C.; Knapp, F. F. Jr. J. Org. Chem. 1986, 51, 2386. DOI: 10.1021/jo00362a044
  • Lei, X.; Jalla, A.; Shama, M. A. A.; Ctafford, J. M.; Cao, B. Synthesis 2015, 47, 1578. DOI: 10.1055/s-0034-1378867

反応例

<保護基の種類>

スルホニル保護基としては、以下のものが頻用される。

  • メタンスルホニル基 (methanesulfonyl, Ms)
  • p-トルエンスルホニル基 (toluenesulfonyl, Ts)
  • o-ニトロベンゼンスルホニル基 (nitrobenzenesulfonyl, Ns)
  • トリフルオロメタンスルホニル基 (trifluoromethanesulfonyl, Tf)

<保護>

Ms基とTs基では保護時の反応機構が異なる。活性種を効率的に生成する目的で、それぞれ性質の異なる塩基が用いられる。すなわち、Ms保護ではトリエチルアミン、Ts保護ではピリジン(もしくはDMAP-トリエチルアミン)を用いることが一般的である。Ns基もTs基と同様の条件で保護できる。

条件によってはCl置換が併発することがある。その場合には無水物(Ms2O・Ts2O)もしくはMe2N(CH2)nNMe2添加条件[1]を用いると良い。スズアセタール法を用いることで選択的なMs化・Ts化を行なうことも可能。

Tf保護にはTf2Oを用いることが一般的である[2]。塩基はEt3N、もしくはやや高価だが求核性のない2,6-(tBu)2-pyridineなどが候補となる。Tf2Oはエノール保護には適していない事が多く、溶媒にTHFを用いると重合が併発する問題がある。この場合には代替試薬として、より穏和な反応性をもつMcMurry試薬[3]・Comins試薬[4]が用いられる。

<脱保護>

スルホニル基は保護が容易である一方、脱保護は難しく、往々にして厳しめの条件が必要となる。ヒドリド還元、酸性条件、酸化条件、高熱条件に耐性がある一方で、強塩基性条件や1電子還元条件に不安定であるため、これが脱保護条件の選定方針になる。

Ms基については、メチル基C-Hの高い酸性度を活かした強ブレンステッド塩基脱保護条件が知られている[5-8]。この条件下では脂肪族メシラートや他種のスルホンアミドは維持される。

Ts基は一般に脱保護が難しく、熱KOH条件などの厳しい条件が必要となる。一電子還元条件であるMg/MeOH系[9]によって穏和に脱保護条件が行える。ただし本条件下ではTsアミドは脱保護されない。

Tsアミドはより強力な還元条件によって脱保護される。Ti(OiPr)4/TMSCl/Mg系[10]、SmI2/amine/water系[11]、Na-naphthalenide系[12]、Na-anthracenide系[13]などの条件が知られている。

変わり種としては、非常に求核力の強いリンアニオンで処理すると窒素上での求核反応が起こり、結果としてTsアミドの切断が生じることが知られている[14]。

フェノールのTf保護体はEt4NOH条件で簡便に脱保護可能である。メチルエステルやシリルエーテルなどは保持される[15]。

Ns基はチオラートの求核付加によって穏和な条件下脱保護できるため、合成化学的価値が特別に高い (福山アミン合成を参照)。

実験手順

アルコールのトシル化[16]

デシルアルコール(1.58 g、10 mmol)をクロロホルム(10 mL)に溶解し、氷浴(0 ℃)で冷却した後、ピリジン(1.62 mL、20 mmol)を加え、続いて塩化p-トルエンスルホニル (2.85 g、15mmol)を少しずつ撹拌しながら添加。反応は2.5時間で完了。 エーテル(30 mL)および水(7 mL)を添加し、有機層を2N HCl、5%NaHCO3水溶液および水で洗浄し、MgSO4で乾燥させた。 溶媒を減圧下で除去し、粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:2%エーテル/石油エーテル)によって精製し、目的物を油状物(3.06 g、98%)として得た。

参考文献

  1. Yoshida, Y.; Shimonishi, K.; Sakakura, Y.; Okada, S.; Aso, N.; Tanabe, Y. Synthesis 1999, 1633. DOI: 10.1055/s-1999-3561
  2. Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1973, 14, 3839. doi:10.1016/S0040-4039(01)87051-9
  3. (a) Hendrickson, J. B.; Bergeron, B.; Sternbach, D. D. Tetrahedron 1975, 31, 2517. doi:10.1016/0040-4020(75)80263-8 (b) McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24, 979. doi:10.1016/S0040-4039(00)81581-6 (c) Scott, W. J. Acc. Chem. Res. 1988, 21, 47. DOI: 10.1021/ar00146a001
  4. Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299. doi:10.1016/S0040-4039(00)60957-7
  5. Ritter, T.; Stanek, K.; Larrosa, I.; Carreira, E. M. Org. Lett. 2004, 6, 1513. DOI: 10.1021/ol049514j
  6. Kita, Y.; Toma, T.; Kan, T.; Fukuyama, T. Org. Lett. 2008, 10, 3251. doi:10.1021/ol801111r
  7. Mori, K.; Rikimaru, K.; Kan, T.; Fukuyama, T. Org. Lett. 2004, 6, 3095. doi:10.1021/ol048857e
  8. Naito, H.; Hata, T.; Urabe, H. Org. Lett. 2010, 12, 1228. DOI: 10.1021/ol100086j
  9. (a) Nyasse, B.; Ragnarsson, U. Chem. Commun. 1997, 1017. doi: 10.1039/A701408B (b) Sridhar, M.; Ashokkumar, B.; Narendar, R. Tetrahedron Lett. 1998, 39, 2847. doi:10.1016/S0040-4039(98)00314-1 (c) Alonso, D. A.; Andersson, P. G. J. Org. Chem. 1998, 63, 9455. doi:10.1021/jo9815296 (d) Pasupathy, K. Synlett 2003, 1942. DOI: 10.1055/s-2003-42033
  10. Shohji, N.; Kawaji, T.; Okamoto, S. Org. Lett. 2011, 13, 2626. DOI: 10.1021/ol200740r
  11. Ankner, T.; Hilmersson, G. Org. Lett. 2009, 11, 503. DOI: 10.1021/ol802243d
  12. Ji, S.; Gortler, L. B.; Waring, A.; Battisti, A. J.; Bank, S.; Closson, W. D.; Wriede, P. A. J. Am. Chem. Soc. 1967, 89, 5311. DOI: 10.1021/ja00996a055
  13. Quaal, K. S.; Ji, S.; Kim, Y. M.; Closson, W. D.; Zubieta, J. D. J. Org. Chem. 1978, 43, 1311. DOI: 10.1021/jo00401a005
  14. Yoshida, S.; Igawa, K.; Tomooka, K. J. Am. Chem. Soc. 2012, 134, 19358. DOI: 10.1021/ja309642r
  15. Ohgiya, T.; Nishiyama, S. Tetrahedron Lett. 2004, 45, 6317. doi:10.1016/j.tetlet.2004.06.104
  16. Kabalka, G. W.; Varma, M.; Varma, R. S.; Srivastava, P. C.; Knapp, F. F. Jr. J. Org. Chem. 1986, 51, 2386. DOI: 10.1021/jo00362a044

関連反応

関連書籍

Greene's Protective Groups in Organic Synthesis

Greene's Protective Groups in Organic Synthesis

Wuts, Peter G. M.
¥19,019(as of 12/17 22:35)
Amazon product information

 

外部リンク

関連記事

  1. マルコフニコフ則 Markovnikov’s Rul…
  2. カンプス キノリン合成 Camps Quinoline Synt…
  3. バナジル(アセチルアセトナト) Vanadyl(IV) acet…
  4. 三枝・伊藤 インドール合成 Saegusa-Ito Indole…
  5. ラロック インドール合成 Larock Indole Synth…
  6. ディークマン縮合 Dieckmann Condensation
  7. クライゼン縮合 Claisen Condensation
  8. ビシュラー・ナピエラルスキー イソキノリン合成 Bischler…

注目情報

ピックアップ記事

  1. 荘司 長三 Osami Shoji
  2. 高活性な不斉求核有機触媒の創製
  3. アレクサンダー・リッチ Alexander Rich
  4. クロロ(1,5-シクロオクタジエン)ロジウム(I) (ダイマー):Chloro(1,5-cyclooctadiene)rhodium(I) Dimer
  5. マイクロ波による事業創出やケミカルリサイクルについて/マイクロ波化学(株)9月度ウェビナー
  6. 【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ
  7. DNAが絡まないためのループ
  8. オペレーションはイノベーションの夢を見るか? その3+まとめ
  9. 低分子の3次元構造が簡単にわかる!MicroEDによる結晶構造解析
  10. ダウ・ケミカル化学プラントで爆発死亡事故(米・マサチューセッツ)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

ブテンを原料に天然物のコードを紡ぐ ―新触媒が拓く医薬リード分子の迅速プログラム合成―

第 687回のスポットライトリサーチは、東京大学大学院 有機合成化学教室 (金井…

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP