[スポンサーリンク]

化学者のつぶやき

ベンゼン環を壊す“アレノフィル”

ベンゼン環の[4+2]光環化付加反応を進行させるトリアゾリン-3,5-ジオンを“arenophile”として用いた、脱芳香族的ジヒドロキシ化およびジアミノジヒドロキシ化が開発された。

ベンゼン環の脱芳香族的官能基化反応

ベンゼン環は、有機分子で頻出する構造単位であり、市販試薬にも合成中間体にも多く含まれる。ベンゼン環の脱芳香族化を伴いながら官能基化し脂環式化合物へ変換する手法は、新たな合成戦略を切り拓くポテンシャルをもつ1。しかし、ベンゼン環は共鳴安定化効果により高い安定性をもつため、この芳香族性を如何に壊すか、脱芳香族化するかが鍵となる。

これまでに報告されているベンゼン環の脱芳香族的官能基化反応の代表例としては、以下が挙げられる(図1)。Cr、Ruなどからなるη6-ベンゼン錯体や2、Os(NH3)5+、TpW(PMe3)NO(Tp: hydridotris(pyarolyl) borate)からなるη2-ベンゼン錯体3に対する脱芳香族的官能基化などが挙げられる。しかし、いずれの手法も、高価もしくは毒性の高い遷移金属種を化学量論量要する。一方で、酵素を用いる酸化反応も知られており、種々のarene dioxygenaseによりベンゼン環をジヒドロキシアレーンへ変換できる4。高い立体、位置選択性をもつ強力な手法だが、基質特異性の問題をもつ上に、組み換え酵素の培養といった高度な専門技術が要求される。最後に、光照射下で芳香環を励起させることでアルケン分子と反応する、光環化付加反応がある5。この手法の問題点は、反応の選択性の制御の難しさである。この光環化付加反応は、ortho-、meta-、para-環化付加反応の三種類存在する。para-で進行する例は少なく、主にmeta-環化付加反応の副反応として認識されている。

 

2016-09-19_03-43-29

図1. 代表的なベンゼン環の脱芳香族的官能基化反応

 

今回、イリノイ大学のSarlah助教授らは、光環化付加反応をうまく制御してベンゼン環の脱芳香族的ジヒドロキシ化およびジアミノジヒドロキシ化を報告したので紹介する。

 

“Dearomative Dihydroxylation with Arenophiles”

Southgate, E. H.; Pospech, J.; Fu, J.; Holycross, D. R.; Sarlah, D. Nature Chem. 2016. DOI: 10.1038/nchem.2594

 

論文著者の紹介

2016-09-19_03-44-54

研究者:David Sarlah
研究者の経歴:-2006 BSc, University of Ljubljana, Slovenia (Prof. Roman Jerala)
2006-2011 Ph.D, The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
2011-2014 Posdoc, ETH, Switzerland (Prof. Erick M. Carreira)
2014- Assistant Prof. at University of Illinoi, Urbana-Champaign
研究内容:天然物合成、反応開発

 

論文の概要

Sarlahらの手法は、光環化付加反応を実用的なレベルに拡張したものといえる。成功の鍵は、彼らが“arenophile”と名付けた1,2,4-トリアゾリン-3,5-ジオンAをアルケンにかわる2πユニットとして用いた点である。

このトリアゾリンジオンAを用いた[4+2]環化付加は、1989年にSheridanらによって既に見出されており、para選択的な環化付加が進行する6

また、反応機構は異なるが、Fujita、Sugimuraらは同分子Aを用いて、アルコキシナフタレンの立体選択的な付加反応へと展開している7

SarlahらはAを用いた[4+2]光環化付加反応の後にできる化合物に対し、低温条件下で触媒的オスミウム酸化をし、シクロヘキセンジオール1を良好な収率で得ることに成功した。この化合物を鍵化合物とし、トリアゾリジン部位の脱離によりcis-シクロヘキサジエンジオール2へ、またトリアゾリジン部位をジアミノ基へと変換反応することで、高度に官能基化されたジアミノジヒドロキシシクロヘキセン3の合成へと展開した。

2016-09-19_03-46-28

図2. メチル1,2,4-トリアゾリン-3,5-ジオンを“Arenophile”として用いた脱芳香族的反応

 

参考文献

  1. Roche, S. P.; Porco, J. A. Chem., Int. Ed. 2011, 50, 4068. DOI: 10.1002/anie.201006017
  2. Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Rev. 2000, 100, 2917. DOI: 10.1021/cr9902852
  3. Keane, J. M.; Harman, W. D. Organometallics 2005, 24, 1786. DOI: 1021/om050029h
  4. (a) Hudlicky, T. Pure Appl. Chem. 2010, 82, 1785. DOI: 1351/PAC-CON-09-10-07 (b) Wender, P. A.; Ternansky, R.; deLong, M.; Singh, S.; Olivero, A.; Rice, K. Pure Appl. Chem. 1990, 62, 1597. DOI: 10.1351/pac199062081597
  5. Remy, R.; Bochet, C. G. Rev. 2016, 116, 9816. DOI: 10.1021/acs.chemrev.6b00005
  6. Hamrock, S. J.; Sheridan, R. S. Am. Chem. Soc. 1989, 111, 9247. DOI: 10.1021/ja00208a028
  7. Fujita, M.; Matsushima, H.; Sugimura, T.; Tai, A.; Okuyama, T. Am. Chem. Soc. 2001, 123, 2946. DOI: 10.1021/ja0029477
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。
山口 研究室

最新記事 by 山口 研究室 (全て見る)

関連記事

  1. 二酸化炭素をメタノールに変換する有機分子触媒
  2. フローリアクターでペプチド連結法を革新する
  3. ダン・シェヒトマン博士の講演を聞いてきました。
  4. ヒト胚研究、ついに未知領域へ
  5. シュガーとアルカロイドの全合成研究
  6. 関東化学2019年採用情報
  7. 無保護糖を原料とするシアル酸誘導体の触媒的合成
  8. プロドラッグの話

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機化学美術館へようこそ ~分子の世界の造形とドラマ
  2. Keith Fagnou Organic Chemistry Symposium
  3. ジボラン(diborane)
  4. ヘリウム不足再び?
  5. カセロネス鉱山
  6. ウルツ反応 Wurtz Reaction
  7. スケールアップ実験スピードアップ化と経済性計算【終了】
  8. アルキルラジカルをトリフルオロメチル化する銅錯体
  9. (S)-5-(ピロリジン-2-イル)-1H-テトラゾール:(S)-5-(Pyrrolidin-2-yl)-1H-tetrazole
  10. 2012年の被引用特許件数トップ3は富士フイルム、三菱化学、積水化学

関連商品

注目情報

注目情報

最新記事

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

Chem-Station Twitter

PAGE TOP