[スポンサーリンク]

化学者のつぶやき

ベンゼン環を壊す“アレノフィル”

[スポンサーリンク]

ベンゼン環の[4+2]光環化付加反応を進行させるトリアゾリン-3,5-ジオンを“arenophile”として用いた、脱芳香族的ジヒドロキシ化およびジアミノジヒドロキシ化が開発された。

ベンゼン環の脱芳香族的官能基化反応

ベンゼン環は、有機分子で頻出する構造単位であり、市販試薬にも合成中間体にも多く含まれる。ベンゼン環の脱芳香族化を伴いながら官能基化し脂環式化合物へ変換する手法は、新たな合成戦略を切り拓くポテンシャルをもつ1。しかし、ベンゼン環は共鳴安定化効果により高い安定性をもつため、この芳香族性を如何に壊すか、脱芳香族化するかが鍵となる。

これまでに報告されているベンゼン環の脱芳香族的官能基化反応の代表例としては、以下が挙げられる(図1)。Cr、Ruなどからなるη6-ベンゼン錯体や2、Os(NH3)5+、TpW(PMe3)NO(Tp: hydridotris(pyarolyl) borate)からなるη2-ベンゼン錯体3に対する脱芳香族的官能基化などが挙げられる。しかし、いずれの手法も、高価もしくは毒性の高い遷移金属種を化学量論量要する。一方で、酵素を用いる酸化反応も知られており、種々のarene dioxygenaseによりベンゼン環をジヒドロキシアレーンへ変換できる4。高い立体、位置選択性をもつ強力な手法だが、基質特異性の問題をもつ上に、組み換え酵素の培養といった高度な専門技術が要求される。最後に、光照射下で芳香環を励起させることでアルケン分子と反応する、光環化付加反応がある5。この手法の問題点は、反応の選択性の制御の難しさである。この光環化付加反応は、ortho-、meta-、para-環化付加反応の三種類存在する。para-で進行する例は少なく、主にmeta-環化付加反応の副反応として認識されている。

 

2016-09-19_03-43-29

図1. 代表的なベンゼン環の脱芳香族的官能基化反応

 

今回、イリノイ大学のSarlah助教授らは、光環化付加反応をうまく制御してベンゼン環の脱芳香族的ジヒドロキシ化およびジアミノジヒドロキシ化を報告したので紹介する。

 

“Dearomative Dihydroxylation with Arenophiles”

Southgate, E. H.; Pospech, J.; Fu, J.; Holycross, D. R.; Sarlah, D. Nature Chem. 2016. DOI: 10.1038/nchem.2594

 

論文著者の紹介

2016-09-19_03-44-54

研究者:David Sarlah
研究者の経歴:-2006 BSc, University of Ljubljana, Slovenia (Prof. Roman Jerala)
2006-2011 Ph.D, The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
2011-2014 Posdoc, ETH, Switzerland (Prof. Erick M. Carreira)
2014- Assistant Prof. at University of Illinoi, Urbana-Champaign
研究内容:天然物合成、反応開発

 

論文の概要

Sarlahらの手法は、光環化付加反応を実用的なレベルに拡張したものといえる。成功の鍵は、彼らが“arenophile”と名付けた1,2,4-トリアゾリン-3,5-ジオンAをアルケンにかわる2πユニットとして用いた点である。

このトリアゾリンジオンAを用いた[4+2]環化付加は、1989年にSheridanらによって既に見出されており、para選択的な環化付加が進行する6

また、反応機構は異なるが、Fujita、Sugimuraらは同分子Aを用いて、アルコキシナフタレンの立体選択的な付加反応へと展開している7

SarlahらはAを用いた[4+2]光環化付加反応の後にできる化合物に対し、低温条件下で触媒的オスミウム酸化をし、シクロヘキセンジオール1を良好な収率で得ることに成功した。この化合物を鍵化合物とし、トリアゾリジン部位の脱離によりcis-シクロヘキサジエンジオール2へ、またトリアゾリジン部位をジアミノ基へと変換反応することで、高度に官能基化されたジアミノジヒドロキシシクロヘキセン3の合成へと展開した。

2016-09-19_03-46-28

図2. メチル1,2,4-トリアゾリン-3,5-ジオンを“Arenophile”として用いた脱芳香族的反応

 

参考文献

  1. Roche, S. P.; Porco, J. A. Chem., Int. Ed. 2011, 50, 4068. DOI: 10.1002/anie.201006017
  2. Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Rev. 2000, 100, 2917. DOI: 10.1021/cr9902852
  3. Keane, J. M.; Harman, W. D. Organometallics 2005, 24, 1786. DOI: 1021/om050029h
  4. (a) Hudlicky, T. Pure Appl. Chem. 2010, 82, 1785. DOI: 1351/PAC-CON-09-10-07 (b) Wender, P. A.; Ternansky, R.; deLong, M.; Singh, S.; Olivero, A.; Rice, K. Pure Appl. Chem. 1990, 62, 1597. DOI: 10.1351/pac199062081597
  5. Remy, R.; Bochet, C. G. Rev. 2016, 116, 9816. DOI: 10.1021/acs.chemrev.6b00005
  6. Hamrock, S. J.; Sheridan, R. S. Am. Chem. Soc. 1989, 111, 9247. DOI: 10.1021/ja00208a028
  7. Fujita, M.; Matsushima, H.; Sugimura, T.; Tai, A.; Okuyama, T. Am. Chem. Soc. 2001, 123, 2946. DOI: 10.1021/ja0029477
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 信じられない!驚愕の天然物たちー顛末編ー
  2. 二つのCO2を使ってアジピン酸を作る
  3. 専門用語豊富なシソーラス付き辞書!JAICI Science D…
  4. とある化学者の海外研究生活:アメリカ就職編
  5. t-ブチルリチウムの発火事故で学生が死亡
  6. 超一流誌による論文選定は恣意的なのか?
  7. 2011年ノーベル化学賞予想ーケムステ版
  8. 工程フローからみた「どんな会社が?」~半導体関連

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ホウ素は求電子剤?求核剤?
  2. カフェイン caffeine
  3. 水島 公一 Koichi Mizushima
  4. サイエンス・ダイレクトがリニューアル
  5. フラーレン:発見から30年
  6. スティーブン・リパード Stephen J. Lippard
  7. 兄貴達と化学物質
  8. クリス・クミンス Christopher C. Cummins
  9. 宮浦憲夫 Norio Miyaura
  10. シアヌル酸クロリド:2,4,6-Trichloro-1,3,5-triazine

関連商品

注目情報

注目情報

最新記事

第91回―「短寿命化学種の分光学」Daniel Neumark教授

第91回の海外化学者インタビューは、ダニエル・ノイマルク教授です。カリフォルニア大学バークレー校化学…

生体分子反応を制御する: 化学的手法による機構と反応場の解明

(さらに…)…

第一手はこれだ!:古典的反応から最新反応まで2 |第7回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

メルクがケムステVシンポに協賛しました

第3回が終わり、来週は第4回となるケムステVシンポ。大変ご好評をいただいており、各所から応援メッセー…

多孔質ガス貯蔵のジレンマを打ち破った MOF –質量でもよし、体積でもよし–

2020 年 Omar Farha らのグループは三角柱型 6 塩基酸配位子を用いて MOF を合成…

第三回ケムステVシンポ「若手化学者、海外経験を語る」開催報告

2020年5月23日(土) 10時より #ケムステVシンポ 「若手化学者、海外経験を語る」を開催しま…

Chem-Station Twitter

PAGE TOP