[スポンサーリンク]

化学者のつぶやき

ベンゼン環を壊す“アレノフィル”

ベンゼン環の[4+2]光環化付加反応を進行させるトリアゾリン-3,5-ジオンを“arenophile”として用いた、脱芳香族的ジヒドロキシ化およびジアミノジヒドロキシ化が開発された。

ベンゼン環の脱芳香族的官能基化反応

ベンゼン環は、有機分子で頻出する構造単位であり、市販試薬にも合成中間体にも多く含まれる。ベンゼン環の脱芳香族化を伴いながら官能基化し脂環式化合物へ変換する手法は、新たな合成戦略を切り拓くポテンシャルをもつ1。しかし、ベンゼン環は共鳴安定化効果により高い安定性をもつため、この芳香族性を如何に壊すか、脱芳香族化するかが鍵となる。

これまでに報告されているベンゼン環の脱芳香族的官能基化反応の代表例としては、以下が挙げられる(図1)。Cr、Ruなどからなるη6-ベンゼン錯体や2、Os(NH3)5+、TpW(PMe3)NO(Tp: hydridotris(pyarolyl) borate)からなるη2-ベンゼン錯体3に対する脱芳香族的官能基化などが挙げられる。しかし、いずれの手法も、高価もしくは毒性の高い遷移金属種を化学量論量要する。一方で、酵素を用いる酸化反応も知られており、種々のarene dioxygenaseによりベンゼン環をジヒドロキシアレーンへ変換できる4。高い立体、位置選択性をもつ強力な手法だが、基質特異性の問題をもつ上に、組み換え酵素の培養といった高度な専門技術が要求される。最後に、光照射下で芳香環を励起させることでアルケン分子と反応する、光環化付加反応がある5。この手法の問題点は、反応の選択性の制御の難しさである。この光環化付加反応は、ortho-、meta-、para-環化付加反応の三種類存在する。para-で進行する例は少なく、主にmeta-環化付加反応の副反応として認識されている。

 

2016-09-19_03-43-29

図1. 代表的なベンゼン環の脱芳香族的官能基化反応

 

今回、イリノイ大学のSarlah助教授らは、光環化付加反応をうまく制御してベンゼン環の脱芳香族的ジヒドロキシ化およびジアミノジヒドロキシ化を報告したので紹介する。

 

“Dearomative Dihydroxylation with Arenophiles”

Southgate, E. H.; Pospech, J.; Fu, J.; Holycross, D. R.; Sarlah, D. Nature Chem. 2016. DOI: 10.1038/nchem.2594

 

論文著者の紹介

2016-09-19_03-44-54

研究者:David Sarlah
研究者の経歴:-2006 BSc, University of Ljubljana, Slovenia (Prof. Roman Jerala)
2006-2011 Ph.D, The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
2011-2014 Posdoc, ETH, Switzerland (Prof. Erick M. Carreira)
2014- Assistant Prof. at University of Illinoi, Urbana-Champaign
研究内容:天然物合成、反応開発

 

論文の概要

Sarlahらの手法は、光環化付加反応を実用的なレベルに拡張したものといえる。成功の鍵は、彼らが“arenophile”と名付けた1,2,4-トリアゾリン-3,5-ジオンAをアルケンにかわる2πユニットとして用いた点である。

このトリアゾリンジオンAを用いた[4+2]環化付加は、1989年にSheridanらによって既に見出されており、para選択的な環化付加が進行する6

また、反応機構は異なるが、Fujita、Sugimuraらは同分子Aを用いて、アルコキシナフタレンの立体選択的な付加反応へと展開している7

SarlahらはAを用いた[4+2]光環化付加反応の後にできる化合物に対し、低温条件下で触媒的オスミウム酸化をし、シクロヘキセンジオール1を良好な収率で得ることに成功した。この化合物を鍵化合物とし、トリアゾリジン部位の脱離によりcis-シクロヘキサジエンジオール2へ、またトリアゾリジン部位をジアミノ基へと変換反応することで、高度に官能基化されたジアミノジヒドロキシシクロヘキセン3の合成へと展開した。

2016-09-19_03-46-28

図2. メチル1,2,4-トリアゾリン-3,5-ジオンを“Arenophile”として用いた脱芳香族的反応

 

参考文献

  1. Roche, S. P.; Porco, J. A. Chem., Int. Ed. 2011, 50, 4068. DOI: 10.1002/anie.201006017
  2. Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Rev. 2000, 100, 2917. DOI: 10.1021/cr9902852
  3. Keane, J. M.; Harman, W. D. Organometallics 2005, 24, 1786. DOI: 1021/om050029h
  4. (a) Hudlicky, T. Pure Appl. Chem. 2010, 82, 1785. DOI: 1351/PAC-CON-09-10-07 (b) Wender, P. A.; Ternansky, R.; deLong, M.; Singh, S.; Olivero, A.; Rice, K. Pure Appl. Chem. 1990, 62, 1597. DOI: 10.1351/pac199062081597
  5. Remy, R.; Bochet, C. G. Rev. 2016, 116, 9816. DOI: 10.1021/acs.chemrev.6b00005
  6. Hamrock, S. J.; Sheridan, R. S. Am. Chem. Soc. 1989, 111, 9247. DOI: 10.1021/ja00208a028
  7. Fujita, M.; Matsushima, H.; Sugimura, T.; Tai, A.; Okuyama, T. Am. Chem. Soc. 2001, 123, 2946. DOI: 10.1021/ja0029477
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. “研究者”人生ゲーム
  2. 電話番号のように文献を探すーRefPapers
  3. 天然の保護基!
  4. 製薬業界の現状
  5. 太陽ホールディングスってどんな会社?
  6. 危険ドラッグ:創薬化学の視点から
  7. 超微量紫外可視分光光度計に新型登場:NanoDrop One
  8. 反芳香族性を有する拡張型フタロシアニン

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Actinophyllic Acidの全合成
  2. フロイド・ロムスバーグ Floyd E. Romesberg
  3. アンドレイ・ユーディン Andrei K. Yudin
  4. 「ペプチドリーム」東証マザーズ上場
  5. 第12回 DNAから人工ナノ構造体を作るーNed Seeman教授
  6. 塩野義 抗インフルエンザ薬製造・販売の承認を取得
  7. オープンアクセスジャーナルの光と影
  8. 有機金属反応剤ハンドブック―3Liから83Biまで
  9. 不均一系接触水素化 Heterogeneous Hydrogenation
  10. ベンゼン環が壊れた?!ー小分子を活性化するー

関連商品

注目情報

注目情報

最新記事

カクテルにインスパイアされた男性向け避妊法が開発される

男性の避妊法はXXドームを付ける一時的なものか、パイプカットを行って完全に生殖行為を不可能にするかと…

水素社会実現に向けた連続フロー合成法を新開発

第179回のスポットライトリサーチは、東京大学理学系研究科化学専攻有機合成化学教室の宮村浩之先生にお…

【大阪開催2月26日】 「化学系学生のための企業研究セミナー」

2020年卒業予定の学生の皆さんは、3月から就活本番を迎えますが、すでに企業の選考がスタートしている…

Nature 創刊150周年記念シンポジウム:ポスター発表 募集中!

本年、Nature 創刊150周年を迎えるそうです。150年といえば、明治時代が始まったばかり、北海…

アルケニルアミドに2つアリールを入れる

ニッケル触媒を用いたアルケニルアミドの1,2-ジアリール化反応が開発された。フマル酸エステルを配位子…

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか…

Chem-Station Twitter

PAGE TOP