[スポンサーリンク]

化学者のつぶやき

鉄カルベン活性種を用いるsp3 C-Hアルキル化

[スポンサーリンク]

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメタルカルベン種を活用し、アリル位・ベンジル位の分子内C-Hアルキル化反応を達成した。

“Catalytic C(sp3)-H Alkylation via an Iron Carbene Intermediate”
Griffin, J. R.; Wendell, C. I.; Garwin, J. A.; White, M. C.* J. Am. Chem. Soc. 2017, 139, 13624-13627. DOI: 10.1021/jacs.7b07602 (アイキャッチ画像は本論文より引用)

先行研究と比較して優れている点

多くの後期遷移金属がメタルカルベン形成を通じて触媒的なC-Hアルキル化を進行させる一方、鉄カルベン種はシクロプロパン化反応への応用に限られていた。2002年に鉄カルベノイドを用いたC-H挿入反応[1]が報告されたが、化学量論量の鉄カルベノイドを単離後、高温で反応させるものであり、C-H挿入型形成反応を触媒的に進行させることはできなかった。

技術や手法の肝

Whiteらは先行研究[1]が触媒反応として機能しない理由として、高温でジアゾエステルの分解やフリーカルベン反応が競合しているためだと考えた[2]。そこで鉄カルベン種を電子的・かつ立体的にチューニングすることで、原料を損壊させない温和な条件下でのC-H挿入反応を達成した。

主張の有効性の検証

①初期検討

種々のジアゾエステルと鉄触媒を用いて反応性を確認したところ、立体的に空いた基質は二量化が進みやすく、立体的に混んだ基質はケトンを生成することが分かった。一方、電子求引基が二重置換したジアゾ化合物については、エステル置換型は反応が進行しなかったものの、スルホン置換型基質は鉄(III)フタロシアニンとの組み合わせで3%のC-H挿入生成物を与えることが分かった。更にカウンターイオンをBArF4アニオンに変え、基質のslow additionを行なうことで、53%まで収率が向上した。鉄(II)を用いたときやNaBArF4単独では反応が進行しなかった。

②基質一般性の検討

オレフィンα位やシリルエーテルα位、ベンジル位などで中程度の収率にて反応が進行した。電子豊富置換基ほど収率が高くなる傾向がある。シクロプロパン化反応(6員環形成)とC-H挿入(5員環形成)が競合する基質においては、選択性よくC-H挿入が進行している。(+)-Tocopherol由来の基質を用いたLate-stageC-H挿入も達成している。

③反応機構の考察

著者らは鉄オキソ種・鉄ナイトレン種に見られるようなホモリティクC-H結合切断が進行し、その後炭素ラジカルとC-C結合形成が起きる段階的な反応機構を提唱した。

これは以下の実験事実から示唆されている。

A) フリーカルベン種の否定

ジアゾエステルにジクロロメタン溶媒中でUV照射を行なうと、フリーカルベン種の生成を経てジクロロメタンへのC-H挿入を起こす。一方で鉄(III)フタロシアニンを用いた反応ではこの生成物は確認されないことから、フリーカルベン経由の反応では無いと言える。

B) 速度論的同位体効果(KIE)の測定

下記重水素置換基質との比較において、C-H挿入が律速段階であることが示されている(式a)。分子内H/D競合では、フタロシアニンのCl置換数の異なるリガンドの電子状態に応じて異なるKIE値を示す。このことからC-H挿入に鉄触媒が関与していることが示唆される。更にRh2(OAc)4のKIEH/D(1.8)より遥かに高い値を示すことから、協奏的ではなく段階的なラジカル機構で進行していることが示唆される(式b)[3]。

C) オレフィンの異性化実験

Z-オレフィン型基質では、Rh2(OAc)4触媒だと立体保持で進行する(協奏的機構)のに対し、鉄(III)フタロシアニン触媒ではE-オレフィンの異性化が生じる。このことも段階的ラジカル機構での進行を示唆している。フタロシアニンのCl置換数が増えると異性化率が小さくなってくるが、これは電子求引基が鉄カルベノイドを不安定化し、C-C結合形成が速くなっているためだと説明されている。

議論すべき点

  • 鉄カルベノイドの反応性が低いためか、強力な電子求引性基質に使用が限られている。「カルベンラジカル」形式の反応性を示す既知触媒に対する利点の実証は、今後の課題といえる。
  • ZhangらのCo-カルベンラジカル触媒[4]のように水素結合による安定化が施される設計ではどうか、鉄オキソ触媒のようにアキシアル置換基によって反応性をチューニングできるかどうか[5]、などには興味が持たれる。

参考文献

  1. Li, Y.; Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M.; You, X.-Z. J. Am. Chem. Soc. 2002, 124, 13185. DOI: 10.1021/ja020391c
  2. Tortoreto, C.; Rackl, D.; Davies. H. M. L. Org. Lett. 2017, 19, 770. DOI: 10.1021/acs.orglett.6b03681
  3. Nakamura, E.; Yoshikai, N.; Yamanaka, M. J. Am. Chem. Soc. 2002, 124, 7181. DOI: 10.1021/ja017823o
  4. (a) Zhu, S.; Xu, X.; Perman, J. A.; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796. (b) Cui, X.; Xu, X.; Jin, L.-M.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219. doi:10.1039/C4SC02610A
  5. Engelmann, X.; Monte-Pérez, I.; Ray, K. Angew. Chem. Int. Ed. 2016, 55, 7632. DOI: 10.1002/anie.201600507

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 真空ポンプはなぜ壊れる?
  2. リボフラビンを活用した光触媒製品の開発
  3. シェールガスにかかわる化学物質について
  4. 黒板に描くと着色する「魔法の」チョークを自作してみました
  5. マイクロ空間内に均一な原子層を形成させる新技術
  6. Wiiで育てる科学の心
  7. 水をヒドリド源としたカルボニル還元
  8. 【5月開催】第八回 マツモトファインケミカル技術セミナー 有機金…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第56回―「メタボロミクスを志向した質量分析技術の開発」Gary Siuzdak教授
  2. 無保護アミン類の直接的合成
  3. リチャード・ヘンダーソン Richard Henderson 
  4. クロスカップリング反応にかけた夢:化学者たちの発見物語
  5. 有機合成化学協会誌 紹介記事シリーズ
  6. 酸素と水分をW保証!最高クラスの溶媒:脱酸素脱水溶媒
  7. 木材を簡便に透明化させる技術が開発される
  8. フェリックス・カステラーノ Felix N. Castellano
  9. サントリー生命科学研究者支援プログラム SunRiSE
  10. 化学Webギャラリー@Flickr 【Part5】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP