[スポンサーリンク]

化学者のつぶやき

(–)-Batrachotoxinin Aの短工程全合成

[スポンサーリンク]

(–)-Batrachotoxinin Aの短工程合成が達成された。今後、batrachotoxin類を分子ツールとした電位依存性ナトリウムチャネルの作用機序解明研究の加速が期待できる

 (–)-Batrachotoxinおよび(–)-batrachotoxinin A

(–)-Batrachotoxin(1)は、フキヤガエルの皮膚から単離された、人に対して非常に高い毒性をもつステロイドアルカロイドに分類される天然物である(Figure 1A)[1]。電位依存性ナトリウムチャネル(NaV)の特定のサブタイプに選択的に作用するため、各NaVの作用機序解明研究における重要な分子ツールとなっている[2]1は、高い酸化度、連続する不斉中心や複雑な環構造をもち、合成化学的にも興味深い化合物である。一方、1と共に単離された (–)-batrachotoxinin A(2)は、NaVに対する活性は1より低いが、1およびそのbatrachotoxin類縁体に容易に誘導できるため、その合成法は古くから研究されている[3]
2の初めての全合成は、1998年に岸らによって報告された(Figure 1B)[4]。Wieland–Miescherケトン(3)を原料とし、鍵反応としてフランの分子内Diels–Alder反応および分子内Oxy-Michael付加を用いて環骨格を構築し、2のラセミ合成を達成した。しかし、この手法は40工程を要するため、2の十分かつ効率的な供給には難があった。2016年にDu Boisらは、出発原料にHajos–Parrishケトン(4)を用いて24工程で2の不斉全合成を達成した(Figure 1B) [5]。この合成法ではラジカルカスケード反応による迅速な環骨格の構築を鍵としている。
今回、北京大学のLuoらは、4から17工程で(–)-batrachotoxinin Aの全合成に成功した(Figure 1C)。逆合成解析の結果、2のホモモルホリン環は5の還元的アミノ化、アシル化および環化反応により構築できるとした。また、5のC環構築には、対称ジケトン6の非対称化を伴う環化反応を用いることとした。この67とジケトン8のカップリングにより合成することとした。

Figure 1. A. Batrachotoxinin類の構造 B. 過去の全合成例 C. (–)-Batrachotoxinin Aの逆合成解析

 

“Total Synthesis of (–)-Batrachotoxinin A: A Local-Desymmetrization Approach”
Guo, Y; Guo, Z.; Lu, J.-T.; Fang, R.; Chen, S.-C.; Luo, T. J. Am. Chem. Soc. 2020, 142, 3675–3679.
DOI: 10.1021/jacs.9b12882

論文著者の紹介


研究者:Luo Tuoping (罗 佗平)
研究者の経歴:
2001–2005 B.Sc., Peking University, China (Prof. Zhen Yang)
2005–2011 Ph.D., Harvard University, USA (Prof. Stuart L. Schreiber)
2011–2013 Postdoc, H3 Biomedicine Inc., USA (Dr. John Yuan Wang)
2013– Provisional Principal Investigator, Peking University-Tsinghua University Joint Center for Life Sciences, China
2013– Principal Investigator, College of Chemistry and Molecular Engineering, Peking University, China
研究内容:天然物の全合成研究、ケミカルバイオロジー

論文の概要

著者らはまず、4から3工程を経てアセタール9を合成した。9にエトキシビニルリチウムを作用させた後、ケタール形成やアセチル部位の臭素化によって7とした。続いて、可視光レドックスカップリング反応を用いて7とジケトン8を連結することで6を合成した。その後、6のブロモアルケン部位をリチオ化し、環化反応によってジケトン部位を非対称化し、TMSOTfで処理することで、低収率ながら11を得た。低収率の原因は、この反応で環化が進行せずにブロモ部位がプロトン化された化合物やアルケニルリチウム種がC18位ケトンに反応して生じるジアステレオマーが副生したためであった。11を三枝–伊藤酸化によってエノン12とした後に、DIBALとLiAlH4により還元することでトリオール13が得られた。その後数工程を経て得られた14に還元的アミノ化、クロロアセチルクロリドを用いたN-アシル化および環化反応を行うことで、ホモモルホリンアミド骨格を有する15へ導き、2の基本骨格の構築を完了した。15を一重項酸素とエン反応させ、無水酢酸で処理しアルデヒド17を合成した。この際C11位が未反応の16が副生したが、同様な反応により17に誘導できることが示されている。最後に、Grignard反応剤とLiAlH4を順に反応させ、2の全合成を達成した。

Figure 2. (–)-Batrachotoxinin Aの全合成

以上、これまでで最短工程で(–)-batrachotoxinin Aの全合成が達成された。今後、batrachotoxin類縁体の合成、さらにはそれら類縁体を用いてNaVsの作用機序の解明研究への応用が期待される。

参考文献

  1. Tokuyama, T.; Daly, J. W.; Witkop, B. Structure of Batrachotoxin, a Steroidal Alkaloid from the Colombian Arrow Poison Frog, Phyllobates Aurotaenia, and Partial Synthesis of Batrachotoxin and its Analogs and Homologs. J. Am. Chem. Soc. 1969, 91, 3931−3938. DOI: 10.1021/ja01042a042
  2. Linford, N. J.; Cantrell, A. R.; Qu, Y.; Scheuer, T.; Catterall, W. A. Interaction of Batrachotoxin With the Local Anesthetic Receptor Site in Transmembrane Segment IVS6 of the Voltage-Gated Sodium Channel. Pro. Natl. Acad. Sci. U. S. A. 1998, 95, 13947−13952. DOI: 10.1073/pnas.95.23.13947
  3. (a) Brown, G. B.; Tieszen, S. C.; Daly, J. W.; Warnick, J. E.; Albuquerque, E. X. Batrachotoxinin-A 20-α-Benzoate:a New Radio-Active Ligand for Voltage Sensitive Sodium Channels. Cell Mol. Neurobiol. 1981, 1, 19–40. DOI: 10.1007/bf00736037 (b) Brown, G. B.; Bradley, R. J. Batrachotoxinin-A N-Methylanthranilate, a New Fluorescent Ligand for Voltage-Sensitive Sodium Channels. J. Neurosci. Methods 1985, 13, 119−129. DOI: 10.1016/0165-0270(85)90024-x (c) Casebolt, T. L.; Brown, G. B. Batrachotoxinin-A-Ortho-Azidobenzoate: a Photoaffinity Probe of the Batrachotoxin Binding Site of Voltage-Sensitive Sodium Channels. Toxicon 1993, 31, 1113−1122. DOI: 10.1016/0041-0101(93)90126-4
  4. Kurosu, M.; Marcin, L. R.; Grinsteiner, T. J.; Kishi, Y. Total Synthesis of (±)-Batrachotoxinin A. J. Am. Chem. Soc. 1998, 120, 6627−6628. DOI: 10.1021/ja981258g
  5. Logan, M. M.; Toma, T.; Thomas-Tran, R.; Du Bois, J. Asymmetric Synthesis of Batrachotoxin: Enantiomeric Toxins Show Functional Divergence Against NaV. Science 2016, 354, 865−869. DOI: 1126/science.aag2981
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. SNSコンテスト企画『集まれ、みんなのラボのDIY!』~結果発表…
  2. ギ酸ナトリウムでconPETを進化!
  3. NBSでのブロモ化に、酢酸アンモニウムをひとつまみ
  4. エントロピーの悩みどころを整理してみる その1
  5. 光照射による有機酸/塩基の発生法:①光酸発生剤について
  6. Appel反応を用いるホスフィンの不斉酸化
  7. クロロラジカルHAT協働型C-Hクロスカップリングの開発
  8. 「MI×データ科学」コース ~データ科学・AI・量子技術を利用し…

注目情報

ピックアップ記事

  1. リケラボとコラボして特集記事を配信します
  2. 溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発
  3. フィッシャー オキサゾール合成 Fischer Oxazole Synthesis
  4. 国武 豊喜 Toyoki Kunitake
  5. リヒャルト・エルンスト Richard R. Ernst
  6. 化学プラントにおけるAI活用事例
  7. 第69回「見えないものを見えるようにする」野々山貴行准教授
  8. 648個の誘導体を合成!ペプチド創薬の新手法を開発
  9. リンドラー還元 Lindlar Reduction
  10. 有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年4月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP