[スポンサーリンク]

化学者のつぶやき

(–)-Batrachotoxinin Aの短工程全合成

[スポンサーリンク]

(–)-Batrachotoxinin Aの短工程合成が達成された。今後、batrachotoxin類を分子ツールとした電位依存性ナトリウムチャネルの作用機序解明研究の加速が期待できる

 (–)-Batrachotoxinおよび(–)-batrachotoxinin A

(–)-Batrachotoxin(1)は、フキヤガエルの皮膚から単離された、人に対して非常に高い毒性をもつステロイドアルカロイドに分類される天然物である(Figure 1A)[1]。電位依存性ナトリウムチャネル(NaV)の特定のサブタイプに選択的に作用するため、各NaVの作用機序解明研究における重要な分子ツールとなっている[2]1は、高い酸化度、連続する不斉中心や複雑な環構造をもち、合成化学的にも興味深い化合物である。一方、1と共に単離された (–)-batrachotoxinin A(2)は、NaVに対する活性は1より低いが、1およびそのbatrachotoxin類縁体に容易に誘導できるため、その合成法は古くから研究されている[3]
2の初めての全合成は、1998年に岸らによって報告された(Figure 1B)[4]。Wieland–Miescherケトン(3)を原料とし、鍵反応としてフランの分子内Diels–Alder反応および分子内Oxy-Michael付加を用いて環骨格を構築し、2のラセミ合成を達成した。しかし、この手法は40工程を要するため、2の十分かつ効率的な供給には難があった。2016年にDu Boisらは、出発原料にHajos–Parrishケトン(4)を用いて24工程で2の不斉全合成を達成した(Figure 1B) [5]。この合成法ではラジカルカスケード反応による迅速な環骨格の構築を鍵としている。
今回、北京大学のLuoらは、4から17工程で(–)-batrachotoxinin Aの全合成に成功した(Figure 1C)。逆合成解析の結果、2のホモモルホリン環は5の還元的アミノ化、アシル化および環化反応により構築できるとした。また、5のC環構築には、対称ジケトン6の非対称化を伴う環化反応を用いることとした。この67とジケトン8のカップリングにより合成することとした。

Figure 1. A. Batrachotoxinin類の構造 B. 過去の全合成例 C. (–)-Batrachotoxinin Aの逆合成解析

 

“Total Synthesis of (–)-Batrachotoxinin A: A Local-Desymmetrization Approach”
Guo, Y; Guo, Z.; Lu, J.-T.; Fang, R.; Chen, S.-C.; Luo, T. J. Am. Chem. Soc. 2020, 142, 3675–3679.
DOI: 10.1021/jacs.9b12882

論文著者の紹介


研究者:Luo Tuoping (罗 佗平)
研究者の経歴:
2001–2005 B.Sc., Peking University, China (Prof. Zhen Yang)
2005–2011 Ph.D., Harvard University, USA (Prof. Stuart L. Schreiber)
2011–2013 Postdoc, H3 Biomedicine Inc., USA (Dr. John Yuan Wang)
2013– Provisional Principal Investigator, Peking University-Tsinghua University Joint Center for Life Sciences, China
2013– Principal Investigator, College of Chemistry and Molecular Engineering, Peking University, China
研究内容:天然物の全合成研究、ケミカルバイオロジー

論文の概要

著者らはまず、4から3工程を経てアセタール9を合成した。9にエトキシビニルリチウムを作用させた後、ケタール形成やアセチル部位の臭素化によって7とした。続いて、可視光レドックスカップリング反応を用いて7とジケトン8を連結することで6を合成した。その後、6のブロモアルケン部位をリチオ化し、環化反応によってジケトン部位を非対称化し、TMSOTfで処理することで、低収率ながら11を得た。低収率の原因は、この反応で環化が進行せずにブロモ部位がプロトン化された化合物やアルケニルリチウム種がC18位ケトンに反応して生じるジアステレオマーが副生したためであった。11を三枝–伊藤酸化によってエノン12とした後に、DIBALとLiAlH4により還元することでトリオール13が得られた。その後数工程を経て得られた14に還元的アミノ化、クロロアセチルクロリドを用いたN-アシル化および環化反応を行うことで、ホモモルホリンアミド骨格を有する15へ導き、2の基本骨格の構築を完了した。15を一重項酸素とエン反応させ、無水酢酸で処理しアルデヒド17を合成した。この際C11位が未反応の16が副生したが、同様な反応により17に誘導できることが示されている。最後に、Grignard反応剤とLiAlH4を順に反応させ、2の全合成を達成した。

Figure 2. (–)-Batrachotoxinin Aの全合成

以上、これまでで最短工程で(–)-batrachotoxinin Aの全合成が達成された。今後、batrachotoxin類縁体の合成、さらにはそれら類縁体を用いてNaVsの作用機序の解明研究への応用が期待される。

参考文献

  1. Tokuyama, T.; Daly, J. W.; Witkop, B. Structure of Batrachotoxin, a Steroidal Alkaloid from the Colombian Arrow Poison Frog, Phyllobates Aurotaenia, and Partial Synthesis of Batrachotoxin and its Analogs and Homologs. J. Am. Chem. Soc. 1969, 91, 3931−3938. DOI: 10.1021/ja01042a042
  2. Linford, N. J.; Cantrell, A. R.; Qu, Y.; Scheuer, T.; Catterall, W. A. Interaction of Batrachotoxin With the Local Anesthetic Receptor Site in Transmembrane Segment IVS6 of the Voltage-Gated Sodium Channel. Pro. Natl. Acad. Sci. U. S. A. 1998, 95, 13947−13952. DOI: 10.1073/pnas.95.23.13947
  3. (a) Brown, G. B.; Tieszen, S. C.; Daly, J. W.; Warnick, J. E.; Albuquerque, E. X. Batrachotoxinin-A 20-α-Benzoate:a New Radio-Active Ligand for Voltage Sensitive Sodium Channels. Cell Mol. Neurobiol. 1981, 1, 19–40. DOI: 10.1007/bf00736037 (b) Brown, G. B.; Bradley, R. J. Batrachotoxinin-A N-Methylanthranilate, a New Fluorescent Ligand for Voltage-Sensitive Sodium Channels. J. Neurosci. Methods 1985, 13, 119−129. DOI: 10.1016/0165-0270(85)90024-x (c) Casebolt, T. L.; Brown, G. B. Batrachotoxinin-A-Ortho-Azidobenzoate: a Photoaffinity Probe of the Batrachotoxin Binding Site of Voltage-Sensitive Sodium Channels. Toxicon 1993, 31, 1113−1122. DOI: 10.1016/0041-0101(93)90126-4
  4. Kurosu, M.; Marcin, L. R.; Grinsteiner, T. J.; Kishi, Y. Total Synthesis of (±)-Batrachotoxinin A. J. Am. Chem. Soc. 1998, 120, 6627−6628. DOI: 10.1021/ja981258g
  5. Logan, M. M.; Toma, T.; Thomas-Tran, R.; Du Bois, J. Asymmetric Synthesis of Batrachotoxin: Enantiomeric Toxins Show Functional Divergence Against NaV. Science 2016, 354, 865−869. DOI: 1126/science.aag2981
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ケムステ版・ノーベル化学賞候補者リスト【2019年版】
  2. 不斉Corey-Chaykovskyエポキシド合成を鍵としたキニ…
  3. BASF150年の歩みー特製ヒストリーブックプレゼント!
  4. sinceの使い方
  5. 有機合成化学協会誌2020年4月号:神経活性化合物・高次構造天然…
  6. 実験でよくある失敗集30選|第2回「有機合成実験テクニック」(リ…
  7. 蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH
  8. エステルからエステルをつくる

注目情報

ピックアップ記事

  1. ラジカルパスでアリールをホウ素から炭素へパス!
  2. 駅トイレ光触媒で消臭
  3. リピンスキーの「ルール・オブ・ファイブ」 Lipinski’s “Rule of Five”
  4. 計算化学:DFTって何? PartIII
  5. Lectureship Award MBLA 10周年記念特別講演会
  6. アメリカで Ph.D. を取る –結果発表ーッの巻–
  7. 二酸化炭素をメタノールに変換する有機分子触媒
  8. アセチレン、常温で圧縮成功
  9. JSR、東大理物と包括的連携に合意 共同研究や人材育成を促進
  10. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年4月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP