[スポンサーリンク]

化学者のつぶやき

(–)-Batrachotoxinin Aの短工程全合成

[スポンサーリンク]

(–)-Batrachotoxinin Aの短工程合成が達成された。今後、batrachotoxin類を分子ツールとした電位依存性ナトリウムチャネルの作用機序解明研究の加速が期待できる

 (–)-Batrachotoxinおよび(–)-batrachotoxinin A

(–)-Batrachotoxin(1)は、フキヤガエルの皮膚から単離された、人に対して非常に高い毒性をもつステロイドアルカロイドに分類される天然物である(Figure 1A)[1]。電位依存性ナトリウムチャネル(NaV)の特定のサブタイプに選択的に作用するため、各NaVの作用機序解明研究における重要な分子ツールとなっている[2]1は、高い酸化度、連続する不斉中心や複雑な環構造をもち、合成化学的にも興味深い化合物である。一方、1と共に単離された (–)-batrachotoxinin A(2)は、NaVに対する活性は1より低いが、1およびそのbatrachotoxin類縁体に容易に誘導できるため、その合成法は古くから研究されている[3]
2の初めての全合成は、1998年に岸らによって報告された(Figure 1B)[4]。Wieland–Miescherケトン(3)を原料とし、鍵反応としてフランの分子内Diels–Alder反応および分子内Oxy-Michael付加を用いて環骨格を構築し、2のラセミ合成を達成した。しかし、この手法は40工程を要するため、2の十分かつ効率的な供給には難があった。2016年にDu Boisらは、出発原料にHajos–Parrishケトン(4)を用いて24工程で2の不斉全合成を達成した(Figure 1B) [5]。この合成法ではラジカルカスケード反応による迅速な環骨格の構築を鍵としている。
今回、北京大学のLuoらは、4から17工程で(–)-batrachotoxinin Aの全合成に成功した(Figure 1C)。逆合成解析の結果、2のホモモルホリン環は5の還元的アミノ化、アシル化および環化反応により構築できるとした。また、5のC環構築には、対称ジケトン6の非対称化を伴う環化反応を用いることとした。この67とジケトン8のカップリングにより合成することとした。

Figure 1. A. Batrachotoxinin類の構造 B. 過去の全合成例 C. (–)-Batrachotoxinin Aの逆合成解析

 

“Total Synthesis of (–)-Batrachotoxinin A: A Local-Desymmetrization Approach”
Guo, Y; Guo, Z.; Lu, J.-T.; Fang, R.; Chen, S.-C.; Luo, T. J. Am. Chem. Soc. 2020, 142, 3675–3679.
DOI: 10.1021/jacs.9b12882

論文著者の紹介


研究者:Luo Tuoping (罗 佗平)
研究者の経歴:
2001–2005 B.Sc., Peking University, China (Prof. Zhen Yang)
2005–2011 Ph.D., Harvard University, USA (Prof. Stuart L. Schreiber)
2011–2013 Postdoc, H3 Biomedicine Inc., USA (Dr. John Yuan Wang)
2013– Provisional Principal Investigator, Peking University-Tsinghua University Joint Center for Life Sciences, China
2013– Principal Investigator, College of Chemistry and Molecular Engineering, Peking University, China
研究内容:天然物の全合成研究、ケミカルバイオロジー

論文の概要

著者らはまず、4から3工程を経てアセタール9を合成した。9にエトキシビニルリチウムを作用させた後、ケタール形成やアセチル部位の臭素化によって7とした。続いて、可視光レドックスカップリング反応を用いて7とジケトン8を連結することで6を合成した。その後、6のブロモアルケン部位をリチオ化し、環化反応によってジケトン部位を非対称化し、TMSOTfで処理することで、低収率ながら11を得た。低収率の原因は、この反応で環化が進行せずにブロモ部位がプロトン化された化合物やアルケニルリチウム種がC18位ケトンに反応して生じるジアステレオマーが副生したためであった。11を三枝–伊藤酸化によってエノン12とした後に、DIBALとLiAlH4により還元することでトリオール13が得られた。その後数工程を経て得られた14に還元的アミノ化、クロロアセチルクロリドを用いたN-アシル化および環化反応を行うことで、ホモモルホリンアミド骨格を有する15へ導き、2の基本骨格の構築を完了した。15を一重項酸素とエン反応させ、無水酢酸で処理しアルデヒド17を合成した。この際C11位が未反応の16が副生したが、同様な反応により17に誘導できることが示されている。最後に、Grignard反応剤とLiAlH4を順に反応させ、2の全合成を達成した。

Figure 2. (–)-Batrachotoxinin Aの全合成

以上、これまでで最短工程で(–)-batrachotoxinin Aの全合成が達成された。今後、batrachotoxin類縁体の合成、さらにはそれら類縁体を用いてNaVsの作用機序の解明研究への応用が期待される。

参考文献

  1. Tokuyama, T.; Daly, J. W.; Witkop, B. Structure of Batrachotoxin, a Steroidal Alkaloid from the Colombian Arrow Poison Frog, Phyllobates Aurotaenia, and Partial Synthesis of Batrachotoxin and its Analogs and Homologs. J. Am. Chem. Soc. 1969, 91, 3931−3938. DOI: 10.1021/ja01042a042
  2. Linford, N. J.; Cantrell, A. R.; Qu, Y.; Scheuer, T.; Catterall, W. A. Interaction of Batrachotoxin With the Local Anesthetic Receptor Site in Transmembrane Segment IVS6 of the Voltage-Gated Sodium Channel. Pro. Natl. Acad. Sci. U. S. A. 1998, 95, 13947−13952. DOI: 10.1073/pnas.95.23.13947
  3. (a) Brown, G. B.; Tieszen, S. C.; Daly, J. W.; Warnick, J. E.; Albuquerque, E. X. Batrachotoxinin-A 20-α-Benzoate:a New Radio-Active Ligand for Voltage Sensitive Sodium Channels. Cell Mol. Neurobiol. 1981, 1, 19–40. DOI: 10.1007/bf00736037 (b) Brown, G. B.; Bradley, R. J. Batrachotoxinin-A N-Methylanthranilate, a New Fluorescent Ligand for Voltage-Sensitive Sodium Channels. J. Neurosci. Methods 1985, 13, 119−129. DOI: 10.1016/0165-0270(85)90024-x (c) Casebolt, T. L.; Brown, G. B. Batrachotoxinin-A-Ortho-Azidobenzoate: a Photoaffinity Probe of the Batrachotoxin Binding Site of Voltage-Sensitive Sodium Channels. Toxicon 1993, 31, 1113−1122. DOI: 10.1016/0041-0101(93)90126-4
  4. Kurosu, M.; Marcin, L. R.; Grinsteiner, T. J.; Kishi, Y. Total Synthesis of (±)-Batrachotoxinin A. J. Am. Chem. Soc. 1998, 120, 6627−6628. DOI: 10.1021/ja981258g
  5. Logan, M. M.; Toma, T.; Thomas-Tran, R.; Du Bois, J. Asymmetric Synthesis of Batrachotoxin: Enantiomeric Toxins Show Functional Divergence Against NaV. Science 2016, 354, 865−869. DOI: 1126/science.aag2981
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ご注文は海外大学院ですか?〜準備編〜
  2. 水素結合の発見者は誰?
  3. 研究室での英語【Part 3】
  4. IRの基礎知識
  5. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  6. 第6回慶應有機化学若手シンポジウム
  7. サッカーボール型タンパク質ナノ粒子TIP60の設計と構築
  8. Reaxys Prize 2013ファイナリスト45名発表!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「人工タンパク質ケージを操る」スイス連邦工科大学チューリヒ校・Hilvert研より
  2. 有機合成化学協会誌2018年8月号:触媒的不斉全合成・分子ローター型蛍光核酸・インドロキナゾリンアルカロイド・非対称化・アズレン・ヒドラゾン-パラジウム触媒
  3. 超分子化学と機能性材料に関する国際シンポジウム2016
  4. 2017年の有機ELディスプレイ世界市場は11年比6.6倍の2兆186億円。
  5. クラブトリー触媒 Crabtree’s Catalyst
  6. 化学系プレプリントサーバ「ChemRxiv」の設立が決定
  7. エチレンをつかまえて
  8. 米国ACSジャーナル・冊子体廃止へ
  9. ボラン錯体 Borane Complex (BH3・L)
  10. レビュー多すぎじゃね??

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができるぞ編

化学分野でのAIを使った研究が多数報告されていてデータ解析は流行のトピックとなっていますが、専門外か…

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士

第108回の海外化学者インタビューは、スチュアート・カントリル博士です。Nature Chemist…

化学工業で活躍する有機電解合成

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全…

Chem-Station Twitter

PAGE TOP