[スポンサーリンク]

化学者のつぶやき

(–)-Batrachotoxinin Aの短工程全合成

[スポンサーリンク]

(–)-Batrachotoxinin Aの短工程合成が達成された。今後、batrachotoxin類を分子ツールとした電位依存性ナトリウムチャネルの作用機序解明研究の加速が期待できる

 (–)-Batrachotoxinおよび(–)-batrachotoxinin A

(–)-Batrachotoxin(1)は、フキヤガエルの皮膚から単離された、人に対して非常に高い毒性をもつステロイドアルカロイドに分類される天然物である(Figure 1A)[1]。電位依存性ナトリウムチャネル(NaV)の特定のサブタイプに選択的に作用するため、各NaVの作用機序解明研究における重要な分子ツールとなっている[2]1は、高い酸化度、連続する不斉中心や複雑な環構造をもち、合成化学的にも興味深い化合物である。一方、1と共に単離された (–)-batrachotoxinin A(2)は、NaVに対する活性は1より低いが、1およびそのbatrachotoxin類縁体に容易に誘導できるため、その合成法は古くから研究されている[3]
2の初めての全合成は、1998年に岸らによって報告された(Figure 1B)[4]。Wieland–Miescherケトン(3)を原料とし、鍵反応としてフランの分子内Diels–Alder反応および分子内Oxy-Michael付加を用いて環骨格を構築し、2のラセミ合成を達成した。しかし、この手法は40工程を要するため、2の十分かつ効率的な供給には難があった。2016年にDu Boisらは、出発原料にHajos–Parrishケトン(4)を用いて24工程で2の不斉全合成を達成した(Figure 1B) [5]。この合成法ではラジカルカスケード反応による迅速な環骨格の構築を鍵としている。
今回、北京大学のLuoらは、4から17工程で(–)-batrachotoxinin Aの全合成に成功した(Figure 1C)。逆合成解析の結果、2のホモモルホリン環は5の還元的アミノ化、アシル化および環化反応により構築できるとした。また、5のC環構築には、対称ジケトン6の非対称化を伴う環化反応を用いることとした。この67とジケトン8のカップリングにより合成することとした。

Figure 1. A. Batrachotoxinin類の構造 B. 過去の全合成例 C. (–)-Batrachotoxinin Aの逆合成解析

 

“Total Synthesis of (–)-Batrachotoxinin A: A Local-Desymmetrization Approach”
Guo, Y; Guo, Z.; Lu, J.-T.; Fang, R.; Chen, S.-C.; Luo, T. J. Am. Chem. Soc. 2020, 142, 3675–3679.
DOI: 10.1021/jacs.9b12882

論文著者の紹介


研究者:Luo Tuoping (罗 佗平)
研究者の経歴:
2001–2005 B.Sc., Peking University, China (Prof. Zhen Yang)
2005–2011 Ph.D., Harvard University, USA (Prof. Stuart L. Schreiber)
2011–2013 Postdoc, H3 Biomedicine Inc., USA (Dr. John Yuan Wang)
2013– Provisional Principal Investigator, Peking University-Tsinghua University Joint Center for Life Sciences, China
2013– Principal Investigator, College of Chemistry and Molecular Engineering, Peking University, China
研究内容:天然物の全合成研究、ケミカルバイオロジー

論文の概要

著者らはまず、4から3工程を経てアセタール9を合成した。9にエトキシビニルリチウムを作用させた後、ケタール形成やアセチル部位の臭素化によって7とした。続いて、可視光レドックスカップリング反応を用いて7とジケトン8を連結することで6を合成した。その後、6のブロモアルケン部位をリチオ化し、環化反応によってジケトン部位を非対称化し、TMSOTfで処理することで、低収率ながら11を得た。低収率の原因は、この反応で環化が進行せずにブロモ部位がプロトン化された化合物やアルケニルリチウム種がC18位ケトンに反応して生じるジアステレオマーが副生したためであった。11を三枝–伊藤酸化によってエノン12とした後に、DIBALとLiAlH4により還元することでトリオール13が得られた。その後数工程を経て得られた14に還元的アミノ化、クロロアセチルクロリドを用いたN-アシル化および環化反応を行うことで、ホモモルホリンアミド骨格を有する15へ導き、2の基本骨格の構築を完了した。15を一重項酸素とエン反応させ、無水酢酸で処理しアルデヒド17を合成した。この際C11位が未反応の16が副生したが、同様な反応により17に誘導できることが示されている。最後に、Grignard反応剤とLiAlH4を順に反応させ、2の全合成を達成した。

Figure 2. (–)-Batrachotoxinin Aの全合成

以上、これまでで最短工程で(–)-batrachotoxinin Aの全合成が達成された。今後、batrachotoxin類縁体の合成、さらにはそれら類縁体を用いてNaVsの作用機序の解明研究への応用が期待される。

参考文献

  1. Tokuyama, T.; Daly, J. W.; Witkop, B. Structure of Batrachotoxin, a Steroidal Alkaloid from the Colombian Arrow Poison Frog, Phyllobates Aurotaenia, and Partial Synthesis of Batrachotoxin and its Analogs and Homologs. J. Am. Chem. Soc. 1969, 91, 3931−3938. DOI: 10.1021/ja01042a042
  2. Linford, N. J.; Cantrell, A. R.; Qu, Y.; Scheuer, T.; Catterall, W. A. Interaction of Batrachotoxin With the Local Anesthetic Receptor Site in Transmembrane Segment IVS6 of the Voltage-Gated Sodium Channel. Pro. Natl. Acad. Sci. U. S. A. 1998, 95, 13947−13952. DOI: 10.1073/pnas.95.23.13947
  3. (a) Brown, G. B.; Tieszen, S. C.; Daly, J. W.; Warnick, J. E.; Albuquerque, E. X. Batrachotoxinin-A 20-α-Benzoate:a New Radio-Active Ligand for Voltage Sensitive Sodium Channels. Cell Mol. Neurobiol. 1981, 1, 19–40. DOI: 10.1007/bf00736037 (b) Brown, G. B.; Bradley, R. J. Batrachotoxinin-A N-Methylanthranilate, a New Fluorescent Ligand for Voltage-Sensitive Sodium Channels. J. Neurosci. Methods 1985, 13, 119−129. DOI: 10.1016/0165-0270(85)90024-x (c) Casebolt, T. L.; Brown, G. B. Batrachotoxinin-A-Ortho-Azidobenzoate: a Photoaffinity Probe of the Batrachotoxin Binding Site of Voltage-Sensitive Sodium Channels. Toxicon 1993, 31, 1113−1122. DOI: 10.1016/0041-0101(93)90126-4
  4. Kurosu, M.; Marcin, L. R.; Grinsteiner, T. J.; Kishi, Y. Total Synthesis of (±)-Batrachotoxinin A. J. Am. Chem. Soc. 1998, 120, 6627−6628. DOI: 10.1021/ja981258g
  5. Logan, M. M.; Toma, T.; Thomas-Tran, R.; Du Bois, J. Asymmetric Synthesis of Batrachotoxin: Enantiomeric Toxins Show Functional Divergence Against NaV. Science 2016, 354, 865−869. DOI: 1126/science.aag2981

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 目指せ化学者墓マイラー
  2. スケールアップのためのインフォマティクス活用 -ラボスケールから…
  3. 高分子鎖の「伸長」と「結晶化」が進行する度合いを蛍光イメージング…
  4. “Wakati Project” 低コス…
  5. 「もしかして転職した方がいい?」と思ったらまずやるべき3つのこと…
  6. 白い器を覆っている透明なガラスってなんだ?
  7. 構造式から選ぶ花粉症のOTC医薬品
  8. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. プラスチックに数層の分子配向膜を形成する手法の開発
  2. Xantphos
  3. ハートウィグ有機遷移金属化学
  4. パール・クノール チオフェン合成 Paal-Knorr Thiophene Synthesis
  5. 住友化学、Dow Chemical社から高分子有機EL用材料事業を買収
  6. 【サステナブルなものづくり】 マイクロ波の使い方セミナー 〜実験例・実証設備などを公開〜
  7. 2009年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  8. デーヴィス酸化 Davis Oxidation
  9. (S)-5-(ピロリジン-2-イル)-1H-テトラゾール:(S)-5-(Pyrrolidin-2-yl)-1H-tetrazole
  10. 英グラクソスミスクライン、抗ウイルス薬を大幅値引きへ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年4月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?

みなさんは現在どのようなもので授業ノートを取っていますでしょうか。私が学生だったときには電子…

化学者のためのWordマクロ -Supporting Informationの作成作業効率化-

「化合物データの帰属チェックリスト、見やすいんですが、もっと使いやすくならないですか」ある日、ラ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP