[スポンサーリンク]

一般的な話題

自動車排ガス浄化触媒って何?

[スポンサーリンク]

みなさんは触媒(Catalyst)と言ったら何を思い浮かべますか(トップ画像出典:株式会社キャタラー)?酸化還元触媒、金属触媒、有機分子触媒、光触媒・・・色々ありますね。化学研究の現場で使用するのはもちろんですが、最近は日常生活にも触媒に関連した商品があります(例えば光触媒商品など)。

では、我々の生活の中で陰ながら大活躍している”自動車排ガス浄化触媒”というのはご存じですか?

自動車排ガス浄化触媒って何?

その名の通り、自動車の排気ガスに含まれている環境や人体に有害な化学物質をきれいに浄化する触媒のことです。ガソリン車の場合は、具体的には以下の反応の促進を行います。

NO + CO (+ HC(炭化水素))  →  CO2 + 1/2N2

NOはNOxでとらえておく方が良さそうです。式の左側はエンジンの燃焼によって発生する代表的な化学物質。NOxは光化学スモッグの原因となりますし、COは人体に悪影響を及ぼすことで有名です。そこで、これらの物質を別の安全な化学物質に変換する必要があります。結果としてNOxをN2に、COをCO2に変換します。(CO2だって環境に悪影響では?という議論はここでは置いておきます。COを排気するよりは安全と考えます)式だけではイメージが湧きにくいので、反応の概略図を引用します。

自動車排ガス浄化触媒の反応

自動車排ガス浄化触媒の反応 (出典 : 東北大学原子材料科学高等研究機構)

これなら一目で分かるでしょうか?ちなみに真ん中の赤い部分が自動車排ガス浄化触媒です。「三元触媒」というのは3の有害排気ガス[CO、CH、NOx]を無害なガス[CO2、H2O、N2]に変える触媒を指します。1番肝の部分となる貴金属触媒の部分には白金(Pt)、パラジウム(Pd)、ロジウム(Rh)のような白金族元素が使われます。「助触媒」とは貴金属触媒の働きを助け、浄化能を向上させる役割を果たす材料のこと。使用する貴金属触媒との相性が大切ですが、酸化セリウム(CeO2)は助触媒として広く利用されているようです。

実はこれ、触媒コンバーターという装置の中に入っているものです。車をお持ちの方、車に興味がある方はすでにご存じかもしれませんね。この装置がついていない車だと、国で指定されている排ガス規制をクリアすることは難しいでしょう。

触媒コンバーター

触媒コンバーター (出典 : 住友金属鉱山株式会社)

ちなみに触媒コンバーターのみで別売りにもなっていて、価格を調べてみると1つ3万円前後のようです(価格幅は広い)。高い!と思うかもしれませんが、触媒コンバーターに使用されるのは貴金属ですのでこの値段設定にもうなずけます。さらに、これらの触媒をサポートする材料であるAl2O3やCeO2を使用するのも要因かと思います。とはいえこれらの存在は大変重要で、比表面積の増加や金属との相互作用による排気ガスの浄化能向上などに役立っています。この働きに関してはいまだ分かっていない点も多く、このメカニズムを明らかにしていくことが触媒研究の1つの目的になります。

別売りになっている理由は、触媒コンバーターのみを交換するケースがあるからです。

自動車排ガス浄化触媒の研究事情

反応式だけを見ると非常に簡単な反応に思えるのですが、実態はかなり複雑です。反応機構についても完全には分かっておらず、固体触媒の難しさをひしひしと実感します。

また、COは酸化する方向へ、NOxは還元する方向へ反応を進行させる必要があるので、反応条件(空燃比)も重要になってきます。空気の割合が多ければ酸化的雰囲気となりますし、燃料の割合が多ければ還元的雰囲気と状況が変わります。この調整がうまくいかないと、COは酸化できたのに、NOxはほとんど浄化できないなどといった結果が起こります。なかなか気難しい装置だと言えるでしょう。

車に必須の装置であることと関係して企業の研究開発が盛んであること、企業と大学の共同研究も積極的に行われることも特徴でしょうか。

おわりに

いかがだったでしょうか。我々の生活に最も密着している触媒は以外にもこの自動車排ガス浄化触媒だったりするのかもしれませんね!自動車排ガス浄化触媒はWeb上でも解説が充実しているので、興味が出てきた方は一度訪れてみると良いかと思います。

関連動画 (出典:株式会社キャタラー)

関連書籍

[amazonjs asin=”4254255861″ locale=”JP” title=”触媒化学 (応用化学シリーズ)”][amazonjs asin=”478270688X” locale=”JP” title=”新しい触媒化学”][amazonjs asin=”4062579227″ locale=”JP” title=”分子レベルで見た触媒の働き 反応はなぜ速く進むのか (ブルーバックス)”]

関連リンク

chiaki

投稿者の記事一覧

国立大学の研究員として勤務。専門は有機合成化学、触媒化学。現象を「分子」の視点でとらえることが何よりも楽しみ。特技は囲碁、棋力はアマチュア2段程度。

関連記事

  1. 第4回「YUGOKAFe」に参加しました!
  2. 化学エネルギーを使って自律歩行するゲル
  3. 硫黄の化学状態を高分解能で捉える計測技術を確立-リチウム硫黄電池…
  4. 高分子ってよく聞くけど、何がすごいの?
  5. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click…
  6. 「遠隔位のC-H結合を触媒的に酸化する」―イリノイ大学アーバナ・…
  7. 進化する電子顕微鏡(TEM)
  8. 二核錯体による窒素固定~世界初の触媒作用実現~

注目情報

ピックアップ記事

  1. 夏のお肌に。ファンデーションの化学
  2. タミフルの効果
  3. 宇宙で結晶化!? 創薬研究を支援する結晶生成サービス「Kirara」
  4. 化学者のためのエレクトロニクス講座~無線の歴史編~
  5. 新規重水素化触媒反応を開発―医薬品への直接重水素導入を達成―
  6. 親子で楽しめる化学映像集 その2
  7. カプロラクタム (caprolactam)
  8. トムソン:2008年ノーベル賞の有力候補者を発表
  9. シランカップリング剤入門【終了】
  10. ロバート・バーグマン Robert G. Bergman

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

第59回有機反応若手の会

開催概要有機反応若手の会は、全国の有機化学を研究する大学院生を中心とした若手研究…

多環式分子を一挙に合成!新たなo-キノジメタン生成法の開発

第661回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)博士課程1…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP