[スポンサーリンク]

化学者のつぶやき

イオンペアによるラジカルアニオン種の認識と立体制御法

[スポンサーリンク]

 

光学異性体は異なる薬理作用をもつことが多く、それらを作り分ける不斉合成法の開発は医農薬分野において非常に重要な課題の一つであることは言うまでもありません。近年、キラル有機分子触媒を用いた不斉反応の研究が世界中で精力的に行われています。

その中で、イオン性のキラル有機分子触媒と反応活性なアニオン種、もしくはカチオン種とのイオン間相互作用を利用した「キラルイオン対型不斉反応」に注目が集まってます。

その先駆的な例として、2007年名古屋大学の大井らは光学活性なアミノホスホニウム塩が、不斉ヘンリー反応に有効な触媒として働くことを明らかにしました(図1)。[1]アミノホスホニウム塩はイオン性ブレンステッド酸の一種であり、イオン間力と水素結合を介した協働的相互作用によって対アニオンを精密に立体認識する役割を担っています。実際、現在までにアミノホスホニウム塩をキラルイオン対触媒として利用した多くの不斉反応が達成されています[2]

図1

図1 イオン性キラルブレンステッド酸を触媒とした不斉ヘンリー反応

 

大井らは、高いアニオン認識力を有する「キラルイオン対型イオン性ブレンステッド酸」と「光レドックス反応」を組み合わせることで、ラジカルアニオン種の立体選択性を制御した不斉反応が可能になると考えました。イオンペアによるラジカルアニオン種の認識と立体制御を行った初の例となり[3]、不斉触媒ラジカル反応の新しい方法論を提供するものと考えられます。

前置きが長くなりましたが、今回は昨年公開された以下の論文について紹介したいと思います。

“Synergistic Catalysis of Ionic Brønsted Acid and Photosensitizer for a Redox Neutral Asymmetric α-Coupling of N–Arylaminomethanes with Aldimines”

Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T.; J. Am. Chem. Soc. 2015, 137, 13768.

DOI: 10.1021/jacs.5b09329

 

「キラルイオン対型イオン性ブレンステッド酸」+「光レドックス反応」

彼らは、Ir触媒を用いた光レドックス反応によりラジカル種が発生することが知られているN-アリールアミノメタンとアルジミンを反応剤に用い、不斉触媒を種々検討しました。

その結果、上述したイオン性ブレンステッド酸触媒を作用させることでN-アリールアミノメタンとアルジミンとの不斉ラジカルカップリング反応が高立体選択的に進行することを見出しました(図2)。

2016-01-04_02-31-02

図2. N-アリールアミノメタンとアルジミンとの不斉ラジカルカップリング反応

触媒サイクル

著者らが提唱したこの反応の触媒サイクルは以下になります(図3)。

まず可視光を照射することでIr(Ⅲ) 4aを基底状態から励起し、励起したIr(Ⅲ) 4bとジフェニルアミン1aの一電子酸化還元反応によりIr(Ⅱ) 4cとラジカルカチオン種1bが生成します。このラジカルカチオン種1bは塩基Bの作用により脱プロトン化され、活性なアミノメチルラジカル1cに変換されます。

一方、イミン2はIr(Ⅱ) 4cにより一電子還元されラジカルアニオン種となり、生じたIr(Ⅲ)イオン対4dを形成します。その後、光学活性アミノホスホニウムカチオンとの対カチオン交換によりIr(Ⅲ) 4aが再生するとともにキラルイオン対5aが生じます。キラルイオン対5aのラジカルアニオン種とアミノメチルラジカル1cがカップリングすることで、光学活性な目的物3を与えます。

2016-01-04_02-31-30

図3. 触媒サイクル

まとめ

本論文でイオン性ブレンステッド酸触媒であるキラルアミノホスホニウム塩を用いることで対カチオンによるラジカルアニオン種の不斉制御に初めて報告しました。本研究は不斉合成の新規方法論を開拓した革新的な反応と位置付けられると思います。

 

関連文献

  1. Uraguchi, D.; Sasaki, S.; Ooi, T. J. Am. Chem. Soc. 2007, 129, 12392. DOI:  10.1021/ja075152+
  2. Uraguchi, D.; Ooi, T. Yuki Gosei Kagaku Kyokaishi 2010, 68, 1185.
  3. これまでにも様々な化学者が、光レドックス反応と不斉触媒反応を併せ用いることで、ラジカル反応の立体制御に成功している。 (a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.  DOI: 10.1126/science.1161976 (b) DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094. DOI: 10.1021/ja3030164 (c) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735. DOI: 10.1021/ja4100595 (d) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392. DOI: 10.1126/science.1251511

2016-01-04_02-32-12

 

外部リンク

 

関連書籍

[amazonjs asin=”331908481X” locale=”JP” title=”Ruthenium in Catalysis (Topics in Organometallic Chemistry)”][amazonjs asin=”4782705522″ locale=”JP” title=”金属錯体の光化学 (錯体化学会選書)”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 有機合成化学協会誌2018年11月号:オープンアクセス・英文号!…
  2. ポンコツ博士の海外奮闘録⑥ 〜博士,アメ飯を食す。おうち系お肉編…
  3. ご注文は海外大学院ですか?〜出願編〜
  4. 【読者特典】第92回日本化学会付設展示会を楽しもう!
  5. 近赤外吸収色素が持つ特殊な電子構造を発見―長波長の近赤外光を吸収…
  6. 分子研「第139回分子科学フォーラム」に参加してみた
  7. gem-ジフルオロアルケンの新奇合成法
  8. 位置選択的C-H酸化による1,3-ジオールの合成

注目情報

ピックアップ記事

  1. ハリース オゾン分解 Harries Ozonolysis
  2. Process Mass Intensity, PMI(プロセス質量強度)
  3. ライオン、フッ素の虫歯予防効果を高める新成分を発見
  4. 文具に凝るといふことを化学者もしてみむとてするなり④:「ブギーボード」の巻
  5. Carl Boschの人生 その9
  6. 動的な軸不斉を有する大環状ホスト分子
  7. コーンフォース転位 Cornforth Rearrangement
  8. ねじれがあるアミド
  9. 歴史の長いマイクロウェーブ合成装置「Biotage® Initiator+」
  10. 発展が続く新型コロナウィルス対応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP