[スポンサーリンク]

スポットライトリサーチ

円偏光スピンLEDの創製

[スポンサーリンク]

第91回目のスポットライトリサーチは、東京工業大学未来産業技術研究所・宗片研究室西沢望特任助教にお願いしました。

同研究室では、スピンの光学的な操作に向けた基本的概念の確立を目指しており、これに関する研究成果を多数発表しています。

最近では、西沢先生を筆頭著者としてPNAS誌に当該研究成果を報告し、プレスリリースとしても取り上げられました。

 

“Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes”
N. Nishizawa, K. Nishibayashi, H. Munekata
PNAS 2017, 8, 1783. DOI: 10.1073/pnas.1609839114

研究室を主宰する宗片先生より、西沢先生について以下のコメントをいただいています。

西沢さんの最大の強みは、科学的な思い込みなしで人と議論が出来る点と実験実行力です。ここで言う実行力とは、自分にとって未経験あるいは予備知識がないような実験でも、自分の背中を押してやってみる力のことです。要するに、オープンマインドで前向きな人物です。(でもちょっと気が弱いかな。)

それでは研究成果をご覧ください!

Q1. 今回のプレス対象となったのはどんな研究ですか?

本研究は、室温で純粋な円偏光を生成するLED素子の開発に成功したというものです。本研究で開発したスピン発光ダイオード(Spin-LED)(図1)は、金属電極の代わりに磁性体電極を用いてスピン角運動量の揃った電子を注入、再結合させることによって純粋な円偏光を微小な素子に通電するだけで得ることができます。

円偏光は偏光面が回転しながら進行する光で(図2)、有機化学において光学異性体の分離などに用いられてきました。Spin-LEDを用いることで光学活性をもつ生体分子に対してこれまで観察困難であった生命活動を詳細に観察できるようになる可能性があります。また、生体内での癌診断や量子暗号通信、3Dディスプレイなどのレーザーと偏光子の組み合わせでは実現できなかった応用が、Spin-LEDによって実現に近づくものと期待されます(図3)。

図1:スピン発光ダイオードの模式図

図2:光の電場成分(黄色)が光の伝搬軸(z軸)の周りをらせん状に回転する。プレスリリースより。

 

図3:新しい円偏光光源としての展望

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

私は現職についてから6年ほどSpin-LEDの実用化を目指して研究してきました。

最初の数年は4Kでも円偏光が1~2%しか得られないという状態が続き、いかにスピンを効率よく半導体に入れられるかに日々頭を悩ませていました。そこで、半導体と磁性体の間に1 nmの結晶性アルミナを作ることに成功し、すぐに15%程度の円偏光が得られました。この結晶性アルミナの開発が本研究での最初のブレイクスルーであり、この成功によって数年の苦悩が報われました。この層の開発は、その後のSpin-LED研究においても根幹的な役割を果たしてくれています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

Spin-LED素子自体は、15年以上前に報告されたものですが、当時は、低温でのみ発光し、円偏光の偏光度も低いものでした。Spin-LEDを実用化するには室温でかつ偏光度100%の円偏光を得る必要があり、そのためには2つの課題を克服する必要がありました。

一つは、磁性体中のスピン偏極した電子を効率よく半導体に注入することです。そのために、欠陥の少ない絶縁層として結晶性のアルミナを半導体上に作製する手法を開発しました。通常の手法ではアルミナは乱雑なアモルファス状態になりやすい物質であるため、先に半導体上に結晶化したアルミニウムの層を作製し、構造を崩さないように低温で長時間酸化することで結晶化した層が得られるようになりました。

図4:結晶性AlOxトンネルバリア層

 

もう一つは、発光した僅かな偏極度の円偏光を増幅する仕組みです。実はこの現象は明確化されていません。半導体中で何度も発光と吸収を繰り返す過程で円偏光度に正帰還がかかり、増幅されたものと考えられています。

Q4. 将来は化学とどう関わっていきたいですか?

今やっと光源のプロトタイプができた段階ですが、今後は様々な分野に対して本素子の応用性を探っていきたいと考えています。私は元々物理畑の人間ですが、化学の研究者の方々とも組んで新しい化学を一緒に作れることを望んでいます。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究の性質上どうしても物理の話になってしまうため、化学の方には少々読みづらかったかもしれませんが、最後まで読んでいただき感謝です。

物理だ、化学だと言ってますが、今後はそういった分野の垣根を取り払うことで科学全体の発展が見込まれると思います。本寄稿もそういった点に貢献できれば幸いです。

 

【ご略歴】

西沢 望 (にしざわ のぞみ)

所属:東京工業大学 科学技術創成研究院 未来産業技術研究所 特任助教 (宗片研究室

2003年3月 東京理科大学理学部応用物理学科 卒業
2008年3月 筑波大学数理物質科学研究科 修了
博士(工学)取得
2008年4月~2010年2月 物質・材料研究機構 研究員
2011年3月~2013年3月 東京工業大学 像情報工学研究所 研究員
2014年4月より 現職

研究テーマ: 円偏光発光デバイスの開発

Orthogonene

投稿者の記事一覧

有機合成を専門にするシカゴ大学化学科PhD3年生です。
趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。
ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。

http://donggroup-sites.uchicago.edu/

関連記事

  1. 天然物界70年の謎に終止符
  2. 不斉アリル位アルキル化反応を利用した有機合成
  3. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  4. 林 雄二郎博士に聞く ポットエコノミーの化学
  5. イオン交換が分子間電荷移動を駆動する協奏的現象の発見
  6. とある社長の提言について ~日本合成ゴムとJSR~
  7. スルホンアミドからスルホンアミドを合成する
  8. 典型元素を超活用!不飽和化合物の水素化/脱水素化を駆使した水素精…

注目情報

ピックアップ記事

  1. 第96回日本化学会付設展示会ケムステキャンペーン!Part III
  2. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-
  3. トリニトロトルエン / Trinitrotoluene (TNT)
  4. 【11月開催】第3回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の触媒としての利用-シリコン、シリコーン硬化触媒としての利用-
  5. まず励起せんと(EnT)!光触媒で環構築
  6. Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~
  7. 糖のC-2位アリール化は甘くない
  8. シクロヘキサンの片面を全てフッ素化する
  9. Dead Endを回避せよ!「全合成・極限からの一手」⑨
  10. 高分子を”見る” その1

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP