[スポンサーリンク]

スポットライトリサーチ

円偏光スピンLEDの創製

第91回目のスポットライトリサーチは、東京工業大学未来産業技術研究所・宗片研究室西沢望特任助教にお願いしました。

同研究室では、スピンの光学的な操作に向けた基本的概念の確立を目指しており、これに関する研究成果を多数発表しています。

最近では、西沢先生を筆頭著者としてPNAS誌に当該研究成果を報告し、プレスリリースとしても取り上げられました。

 

“Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes”
N. Nishizawa, K. Nishibayashi, H. Munekata
PNAS 2017, 8, 1783. DOI: 10.1073/pnas.1609839114

研究室を主宰する宗片先生より、西沢先生について以下のコメントをいただいています。

西沢さんの最大の強みは、科学的な思い込みなしで人と議論が出来る点と実験実行力です。ここで言う実行力とは、自分にとって未経験あるいは予備知識がないような実験でも、自分の背中を押してやってみる力のことです。要するに、オープンマインドで前向きな人物です。(でもちょっと気が弱いかな。)

それでは研究成果をご覧ください!

Q1. 今回のプレス対象となったのはどんな研究ですか?

本研究は、室温で純粋な円偏光を生成するLED素子の開発に成功したというものです。本研究で開発したスピン発光ダイオード(Spin-LED)(図1)は、金属電極の代わりに磁性体電極を用いてスピン角運動量の揃った電子を注入、再結合させることによって純粋な円偏光を微小な素子に通電するだけで得ることができます。

円偏光は偏光面が回転しながら進行する光で(図2)、有機化学において光学異性体の分離などに用いられてきました。Spin-LEDを用いることで光学活性をもつ生体分子に対してこれまで観察困難であった生命活動を詳細に観察できるようになる可能性があります。また、生体内での癌診断や量子暗号通信、3Dディスプレイなどのレーザーと偏光子の組み合わせでは実現できなかった応用が、Spin-LEDによって実現に近づくものと期待されます(図3)。

図1:スピン発光ダイオードの模式図

図2:光の電場成分(黄色)が光の伝搬軸(z軸)の周りをらせん状に回転する。プレスリリースより。

 

図3:新しい円偏光光源としての展望

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

私は現職についてから6年ほどSpin-LEDの実用化を目指して研究してきました。

最初の数年は4Kでも円偏光が1~2%しか得られないという状態が続き、いかにスピンを効率よく半導体に入れられるかに日々頭を悩ませていました。そこで、半導体と磁性体の間に1 nmの結晶性アルミナを作ることに成功し、すぐに15%程度の円偏光が得られました。この結晶性アルミナの開発が本研究での最初のブレイクスルーであり、この成功によって数年の苦悩が報われました。この層の開発は、その後のSpin-LED研究においても根幹的な役割を果たしてくれています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

Spin-LED素子自体は、15年以上前に報告されたものですが、当時は、低温でのみ発光し、円偏光の偏光度も低いものでした。Spin-LEDを実用化するには室温でかつ偏光度100%の円偏光を得る必要があり、そのためには2つの課題を克服する必要がありました。

一つは、磁性体中のスピン偏極した電子を効率よく半導体に注入することです。そのために、欠陥の少ない絶縁層として結晶性のアルミナを半導体上に作製する手法を開発しました。通常の手法ではアルミナは乱雑なアモルファス状態になりやすい物質であるため、先に半導体上に結晶化したアルミニウムの層を作製し、構造を崩さないように低温で長時間酸化することで結晶化した層が得られるようになりました。

図4:結晶性AlOxトンネルバリア層

 

もう一つは、発光した僅かな偏極度の円偏光を増幅する仕組みです。実はこの現象は明確化されていません。半導体中で何度も発光と吸収を繰り返す過程で円偏光度に正帰還がかかり、増幅されたものと考えられています。

Q4. 将来は化学とどう関わっていきたいですか?

今やっと光源のプロトタイプができた段階ですが、今後は様々な分野に対して本素子の応用性を探っていきたいと考えています。私は元々物理畑の人間ですが、化学の研究者の方々とも組んで新しい化学を一緒に作れることを望んでいます。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究の性質上どうしても物理の話になってしまうため、化学の方には少々読みづらかったかもしれませんが、最後まで読んでいただき感謝です。

物理だ、化学だと言ってますが、今後はそういった分野の垣根を取り払うことで科学全体の発展が見込まれると思います。本寄稿もそういった点に貢献できれば幸いです。

 

【ご略歴】

西沢 望 (にしざわ のぞみ)

所属:東京工業大学 科学技術創成研究院 未来産業技術研究所 特任助教 (宗片研究室

2003年3月 東京理科大学理学部応用物理学科 卒業
2008年3月 筑波大学数理物質科学研究科 修了
博士(工学)取得
2008年4月~2010年2月 物質・材料研究機構 研究員
2011年3月~2013年3月 東京工業大学 像情報工学研究所 研究員
2014年4月より 現職

研究テーマ: 円偏光発光デバイスの開発

The following two tabs change content below.

Orthogonene

有機合成を専門にするシカゴ大学化学科PhD3年生です。 趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。 ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。 http://donggroup-sites.uchicago.edu/

関連記事

  1. クリーンなラジカル反応で官能基化する
  2. ここまでできる!?「DNA折り紙」の最先端 ① ~入門編~
  3. MacでChem3Dー新たなる希望ー
  4. 目指せ!! SciFinderマイスター
  5. 投票!2015年ノーベル化学賞は誰の手に??
  6. オペレーションはイノベーションの夢を見るか? その3+まとめ
  7. Reaxys Prize 2012ファイナリスト45名発表!
  8. アズレンの蒼い旅路

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 私が思う化学史上最大の成果-2
  2. 水素化ジイソブチルアルミニウム Diisobutylaluminium hydride
  3. 高井・ロンバード反応 Takai-Lombardo Reaction
  4. Google翻訳の精度が飛躍的に向上!~その活用法を考える~
  5. 化学者だって数学するっつーの! :シュレディンガー方程式と複素数
  6. 集積型金属錯体
  7. ピナー反応 Pinner Reaction
  8. 住友化学、硫安フリーのラクタム製法でものづくり大賞
  9. (-)-Cyanthiwigin Fの全合成
  10. 生物に打ち勝つ人工合成?アルカロイド骨格多様化合成法の開発

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2018年12月号:シアリダーゼ・Brook転位・末端選択的酸化・キサンテン・ヨウ素反応剤・ニッケル触媒・Edoxaban中間体・逆電子要請型[4+2]環化付加

有機合成化学協会が発行する有機合成化学協会誌、2018年12月号がオンライン公開されました。…

Googleの面接で話した自分の研究内容が勝手に特許出願された

This is what happened when I went to visit a giant…

信頼度の高い合成反応を学ぶ:Science of Synthesis(SoS)

今回はScience of Synthesis(SoS)という合成化学のオンラインデータベースを紹介…

ホイスラー合金を用いる新規触媒の発見と特性調節

第174回目のスポットライトリサーチは、東北大学 学際科学フロンティア研究所・小嶋隆幸 助教にお願い…

START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE

さあついに今年も就職活動の時期がやってきました。私の研究室でも今年はさすがに何名か就職活動をはじめま…

【ジーシー】新卒採用情報(2020卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

PAGE TOP