[スポンサーリンク]

chemglossary

血液―脳関門透過抗体 BBB-penetrating Antibody

[スポンサーリンク]

ある種のリコンビナント抗体は血液-脳関門を透過する能力を持つことが知られている。近年、中枢神経系疾患の抗体医薬としての応用が検討されつつある(画像:Nature.com)。

中枢神経系疾患の現状

 中枢神経系(CNS)疾患は10億人に影響を及ぼし、全世界の医療健康費負担の13%を占めている(これは癌や心疾患などを上回る)。神経疾患のうちアルツハイマー型認知症が死因の3%を占める。認知症に苦しむ患者は全世界で4700万人を数え、20年毎に患者数は倍増すると考えられている。また、認知症ケア単独で要する費用は、全世界でUS $818Bと見積もられる(2015年現在)。

 脳とその機能の理解不足、off-target副作用の問題、治療評価に有効なバイオマーカーの欠如などがCNS疾患治療の非効率性をもたらしており、典型的なアンメットメディカルニーズとなっている。

 物理的対処(電気刺激・外科手術など)ではなく、より精密な化学的手法でこれを解決するには、脳に薬物をデリバリーする技術が必要不可欠となる。しかしながら血液-脳関門(Blood-Brain Barrier, BBB)の存在により、多くの薬物がは脳から排除されてしまう。

BBBについての基礎知識

 多くの場合、薬物を脳にデリバリーする効率が悪いことが脳を標的とする化学療法の問題であるが、これはBBBの存在による。BBBは血液と脳の間で神経機能に最適な形で物質をやりとりする「動的界面」として現在は理解されている。脳毛細血管(cerebral capillary)はBBBの95%を占め、分子がCNSに進入する主要経路となる。抗体はもちろん、免疫細胞や免疫媒体の進入もBBBが防いでいるため、CNSは免疫特権部位と考えられている。

 BBB透過能があるのはMW<400の脂溶性小分子、もしくはキャリア媒介移動(CMT)経路を通じた必須分子(アミン酸、グルコース、核酸など)とされており、大抵の分子は排出ポンプによって積極的に外に出されている。抗体、脂質タンパク、ペプチドなどの巨大分子は、受容体媒介移動(RMT)経路のみで進入できる。受容体にリガンドがくっつくとエンドサイトーシスがトリガーされ、その後対面からのエキソサイトーシスによって脳内に放出され取り込まれる(トランスサイトーシス)。RMTを刺激するリガンドとしては、鉄結合トランスフェリン(Tf)、インスリン、LDL蛋白、レプチンなどが知られている

BBB透過経路の概略(論文[1]より引用)

BBB透過抗体の原理

 BBB透過を達成するには、内在性のBBB輸送システムを活用する戦略こそが安全性が高く、また制御可能なものでもある。上記の中ではRMT過程を活用するのが特に巨大分子の輸送にとっては良い戦略となる。具体的にはRMT受容体に結合できるリコンビナント抗体を作ることで、抗体を脳に輸送することができる。

 中でもよく標的にされるものがトランスフェリン受容体(TfR)である。Proof of ConceptはUCLAのWilliam M. Pardridgeらによって達成された。彼の作成したOX26抗体はトランスフェリン結合部位から離れた位置にあるTfRエピトープに結合し、Tf輸送を競合阻害しない。In vivo実験によって、各種薬効タンパクをfuseさせたOX26を脳に移行させることに成功し、脳卒中やハンチントン病などへ応用できる可能性が示された。また、TfR抗体にアラニン変異を導入することで結合定数を様々に変更した抗体を作成し、相関を調べたところ、比較的弱く結合する抗体ほど脳移行性が高いことが示された(TfRから解離するかどうかが重要)。同じようにインスリン受容体(IR)もよく標的とされる。

 しかしながらTfRやIRは脳以外の組織にも沢山存在するため、安全面での懸念がある。この問題認識から、BBB特異性の高い新規RMT標的の探索が現在は進められている。脳内皮細胞に発現する高度糖修飾タンパク(Cdc50A)などはその標的の一つになり得る。

Bispecific抗体の活用

 抗体工学の進展に伴い、2種の異なる抗原を認識できるbispecific抗体が作られるようになった。一つの認識部位がBBBのRMT受容体認識を担当し、もう片方がCNS疾患の治療標的を認識できるようにデザインしておくことで、BBB透過能と抗体医薬機能が同時に達成できる。

Bispecific抗体の作用機序(論文[1]より引用)

 最初のBBB透過型bispecific抗体はアルツハイマー病の治療目的で開発された。これはアミロイドβ(Aβ)を認識する可変領域をTfR抗体もしくはIR抗体にfuseさせたものとなっている。BBBを透過した抗体はAβの凝集を解離させる。そしてAβ結合済み抗体は、BBBの抗体排除機能(neonatal Fc receptor経由)によってAβとともに脳外に排出されていく。実際に治療効果があることが、アルツハイマー病トランスジェニックモデルマウスへの投与で示されている。このほかにもアミロイド前駆体切断酵素(BACE1)とTfRを同時標的にできるbispecific抗体も、脳内Aβレベルを減じうることが示されている。いずれの詳細な機構についても、現在でも未解明点は多い。

 2003年にPardridge教授らが設立したベンチャーArmaGen社によって、このようなBBB透過性抗体医薬が臨床試験に供されている。

CNS疾患抗体医薬と臨床試験:現状と課題

 抗体医薬によるアルツハイマー病治療は、これまで目だった効能に欠けるとの理由から臨床試験でドロップしてきている。その原因の詳細は不明だが二つの仮説があり、1)抗体のCNSへの取り込み効率がBBBに阻まれ低い 2)抗体投与タイミングが疾病進行度に比して遅すぎた というものである。

 たとえばSolenezumbではプラセボとの差異がなかったとして臨床試験が打ち切られているが、データの再解釈により、症状穏和な患者には改善効果があったことが後に明らかになっている。つまりは効果を最大化するための投与タイミングのミス、もっと言えば疾病初期のバイオマーカーの欠如が一つの問題になっている可能性がある。これは現代的バイオ医薬品に共通する問題と言える。

 またいくつかは、脳溢血や髄膜脳炎などのリスクが問題となってドロップしている。この問題はモノクローナル抗体が脳から血中に排出されず、脳へ蓄積することで引き起こされると考えられている。

 ゆえにBBBでの抗体の進入・排出過程の解明を指向した学術研究によって、より安全かつ効果的なCNS系抗体医薬の開発が行えるものと期待される。

参考文献

  1. “Antibody Approaches to Treat Brain Diseases” Veves, V.; Aires-daSilva, F.; Corte-Real, S.; Castanho, M. A. R. B. Trends in Biotech. 2016, 34. 36. doi: 10.1016/j.tibtech.2015.10.005
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ポリメラーゼ連鎖反応 polymerase chain reac…
  2. 研究のための取引用語
  3. ステープルペプチド Stapled Peptide
  4. トリメチルロック trimethyl lock
  5. クロスカップリング反応 cross coupling react…
  6. N-ヘテロ環状カルベン / N-Heterocyclic Car…
  7. Spin-component-scaled second-ord…
  8. 試験管内選択法(SELEX法) / Systematic Evo…

注目情報

ピックアップ記事

  1. 京のX線分析装置、国際標準に  島津製・堀場、EU環境規制で好調
  2. 有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】
  3. 野依記念物質科学研究館
  4. 印民間で初の17億ドル突破、リライアンスの前3月期純益
  5. House-Meinwald転位で立体を操る
  6. 第175回―「酸素を活用できる新規酸化触媒系の開発」Mark Muldoon准教授
  7. コーンフォース転位 Cornforth Rearrangement
  8. リード反応 Reed Reaction
  9. 森林総合研究所、広葉樹害虫ヒメボクトウの性フェロモン化学構造を解明
  10. 【Q&Aシリーズ❶ 技術者・事業担当者向け】 マイクロ波によるガス反応プロセス

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP