[スポンサーリンク]

化学者のつぶやき

シクロヘキサンの片面を全てフッ素化する

[スポンサーリンク]

 

フッ素は医薬品、有機エレクトロニクス材料、ポリマーなどに含まれており、その用途は多岐にわたります。テフロンの名で有名なポリテトラフルオロエチレン(PTFE)といったペルフルオロ炭素化合物は、耐薬品性、撥水性などの性質をもち、調理器具や塗装などに用いられています。

原子、分子レベルでこれらの性質を見てみると、フッ素は全原子の中で電気陰性度が最も高く、分極率が低いという特性があります。これらの性質から、テフロンなどのポリフッ化炭素化合物は電子反発しやすく、弱い分子間相互作用を示します。一方で、その高い電気陰性度に起因して、正電荷を帯びた分子と静電相互作用をしやすいといった性質があります。その現象が現れた顕著な例がベンゼン–ヘキサフルオロベンゼン錯体です(図1)[1]。ベンゼン(C6H6)は水素の低い電気陰性度のためベンゼン環上の電子密度が高い(δ)が、ヘキサフルオロベンゼンでは逆の現象が起こり、ベンゼン環上の電子密度はδ+となります。そのため、二つの化合物はお互いのベンゼン環の面が重なるように相互作用し固体を生じます。このような特異な性質から、フッ素を炭素骨格に導入することで現れる性質は化学者の強い興味や関心を集めています。

 

2015-05-16_17-02-37

多フッ素化された化合物例

 

先に挙げたペルフルオロ炭素化合物と比較し、部分的に多フッ素化された炭化水素はどのような性質を示すのでしょう。また、それらフッ素が、ある一方向に並べた場合どうなるのでしょう。分子全体で高極性になり、フッ素同士の電子反発により大きく歪んだ分子になることが予測されます。

最近、St Andrews大学のO’Haganらは上記に挙げた疑問の答えの1つとなるような、シクロヘキサンの片面が全てフッ素化された分子(cis-1,2,3,4,5,6-ヘキサフルオロシクロヘキサン:トップ画像)を独自の合成法で作り上げ、その化合物がもつ性質を明らかにしました。この分子は全てフッ素からなる面と水素からなる面とで真逆の電子密度をもつ、表裏のある分子です。今回はこの分子について紹介したいと思います。

 

“All-cis 1,2,3,4,5,6-hexafluorocyclohexane is a facially polarized cyclohexane”

Keddie, N. S.; Slawin, A. M. Z.; Lebl, T.; Philp, D.; O’Hagan, D. Nature Chem. 2015, 

DOI:10.1038/nchem.2232

 

合成困難化合物: 最も不安定な配座異性体、Fの低い求核性と大きな電子反発

2011年にO’Haganらはシクロヘキサンの炭素が全て一つずつフッ素化された分子bの合成に成功しています[2]。しかし、All-cis-ヘキサフルオロシクロヘキサンの合成には至ってませんでした。All-cis 1,2,3,4,5,6-ヘキサフルオロシクロヘキサンの合成が困難を極める理由は二つあります。

 

1. 化合物自体の基底エネルギーが高い

1,2,3,4,5,6-ヘキサフルオロシクロヘキサンは8種類の立体配置(configuration)をもち、立体配座(conformation)を含めると異性体は15種類に及びます。その中でも今回の目的化合物All-cis-ヘキサフルオロシクロヘキサンcは最も高い基底エネルギーをもち、一番安定な異性体aとは約15 kcal mol-1の差があります (図2)。

2. フッ素の低い求核性と大きな電子反発

後に述べますが、今回の合成ではC–O結合部位に対する逐次的なFのSN2反応を用いて立体選択的に合成する戦略を立案しています。フッ素の低い求核性と電子反発しやすい性質から狙い通りの求核置換反応を行うことは難しいと予想され、特に置換されたフッ素が多くなる合成終盤ではSN2反応よりも脱離反応が優先的に起こる可能性があります。

これらの理由によりAll-cis-ヘキサフルオロシクロヘキサンの合成はこれまで報告がありませんでした。

2015-05-16_17-03-36

 

合成経路

O’Haganらは酸素が全て下側を向いた化合物3(ミオイノシトール(2)から誘導)を鍵中間体とし、C–O結合部位にフッ化物イオンがSN2反応を起こすことでフッ素が全て上向きの分子が合成できると考えました(図 3)。しかし先ほどのAll-cis-ヘキサフルオロシクロヘキサン合成における問題点2にあげたようにFは求核性が低いため、狙い通りSN2反応を進行させるのは困難です。この問題に対し、O’Haganらはまず、3に対してdeoxofluor[3]という高温でも使えるフッ素化試薬を反応させ高収率で4へ誘導しました。その後はマイクロ波照射下トリルエチルアミン三フッ化水素塩(3HF·Et3N)を用いてC–O部位へのSN2反応を進行させています。すなわち、4のエポキシドに対する位置選択的なSN2反応、生じたヒドロキシ基をトリフラートへ変換した後にSN2反応を2度行うことで、12工程、総収率2%で目的のAll-cis-ヘキサフルオロシクロヘキサン(1)の合成を達成しました。合成終盤では適用可能なフッ素化剤が3HF·Et3Nに限られるなど、今回の合成の困難さが伺えます。特に最後の反応では当初懸念していた通り脱離反応も進行したため、低収率にとどまっています。

 

2015-05-16_17-04-24

図3 All-cis-ヘキサフルオロシクロヘキサンの合成

 

どのような性質をもつか?

フッ素を6つももつ化合物ではあるが、X線結晶構造解析により、本分子の構造は意外にもシクロヘキサンと類似し、イス型配座をとることがわかりました(図 4a)。原子同士の電子反発によりaxial位のフッ素同士は外側を向くことが考えられますが、X線構造解析の結果3つのaxial位にあるフッ素は全て平行に配置していました。また量子化学計算により水素側では正電荷、フッ素側では負電荷と二面性を表す化合物であることも明らかになりました。この性質はパッキング構造に大きく反映されており、全ての分子が同一方向を向いています(図 4b, 4c)。表裏でお互いに相対する電荷を帯びていることにより、この分子は既存のアルカン分子の中で最も大きな分子双極子をもちます。その一方で、親水性はなく”強い分極をもつが疎水性の化合物”であることがわかりました。さらに、O’Haganらは温度可変19F NMRを用いてAll-cis-ヘキサフルオロシクロヘキサンの反転障壁を求めた結果、∆H = 13.30.43 kcal mol-1 ∆S = –3.81.6 cal mol-1 K-1となりました (cf: シクロヘキサン; ∆H = 10.8 kcal mol-1, ∆S = 2.8 cal mol-1 K-1)。これらの結果からシクロヘキサンよりも遷移状態は類似しているが、少し不安定化されていることが推測できます。

 

2015-05-16_17-05-13

図4

 

以上によりO’Haganらは今まで誰も合成したことがないAll-cis 1,2,3,4,5,6-hexafluoro- cyclohexaneを合成し、その性質を明らかにしました。X線結晶構造解析の結果、シクロヘキサンとほぼ同じ構造をしていることがわかり、また、この分子は表と裏で逆の電荷を持つことも確認することができました。このように、本研究によってこれまで知られていなかった炭素フッ素化合物の新たな一面が発見されました。

とここまで、書きましたが、一番気になったのは、実はさらに基本的な物性、「この化合物の融点や沸点はいくつなの?」ということです。そもそも常温でX線結晶構造解析を行なっていることから固体であるということが単純な驚きでした。おそらく、融けた瞬間に揮発する、つまり昇華するような化合物であることが予想されます。残念ながら、今回それらの記載はなく、実験項読み取ると0.8mgしか合成していないので、基本的な物性は測れなかったというのが本音でしょう(論文査読でツッコミされなかった?のもすごい)。なにはともあれ、新規化合物の合成は多くの化学者が興味があるところだと思いますので、こういう基礎研究は応援したいと思います。

 

参考文献

  1. Patrick, C. R.; Prosser, G. S. Nature 1960, 187, 1021. DOI: 10.1038/1871021a0
  2. (a) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; O’Hagan, D. Angew. Chem., Int. Ed. 2012, 51, 10086. 
DOI: 10.1002/anie.201205577 (b) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; Kirsch, P.; O’Hagan, D. Chem. Commun. 2011, 47, 8265. DOI:10.1039/C1CC13016A (c) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; Kirsch, P.; O’Hagan, D. Chem. Commun. 2012, 48, 9643. DOI: 10.1039/C2CC34679F
  3. Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M. Chem. Commun. 1999, 215. DOI: 10.1039/A808517J

 

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 有機合成化学協会誌2018年11月号:オープンアクセス・英文号!…
  2. 株式会社ジーシーってどんな会社?
  3. Dead Endを回避せよ!「全合成・極限からの一手」②
  4. 6年越しで叶えた“海外と繋がる仕事がしたい”という夢
  5. LSD1阻害をトリガーとした二重機能型抗がん剤の開発
  6. 「日産化学」ってどんな会社?
  7. MEXT-JST 元素戦略合同シンポジウム ~元素戦略研究の歩み…
  8. 次世代の放射光施設で何が出来るでしょうか?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Ns基とNos基とDNs基
  2. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウム
  3. 製薬、3強時代に 「第一三共」きょう発足
  4. 生命の起源に迫る水中ペプチド合成法
  5. ダウ・ケミカル、液晶パネル用化学品をアジア生産へ
  6. ジョナス・ピータース Jonas C. Peters
  7. 若手研究者vsノーベル賞受賞者 【化学者とは?!編】
  8. グサリときた言葉
  9. メタボ薬開発に道、脂肪合成妨げる化合物発見 京大など
  10. 投票!2017年ノーベル化学賞は誰の手に!?

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-

「ケミカルマテリアルJapan2020-ONLINEー(主催:株式会社化学工業日報社)」は、未来に向…

「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~ 2

Tshozoです。前回の続き、②リチウムイオン電池についてです。なおこの関連の技術は進化が非常に早く…

炊きたてご飯の香り成分測定成功、米化学誌に発表 福井大学と福井県農業試験場

 福井大学と福井県農業試験場は、これまで難しいとされていた炊きたてご飯の香り成分の測定に成功したと米…

化学者のためのエレクトロニクス講座~配線技術の変遷編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

Chem-Station Twitter

PAGE TOP