[スポンサーリンク]

化学者のつぶやき

シクロヘキサンの片面を全てフッ素化する

[スポンサーリンク]

 

フッ素は医薬品、有機エレクトロニクス材料、ポリマーなどに含まれており、その用途は多岐にわたります。テフロンの名で有名なポリテトラフルオロエチレン(PTFE)といったペルフルオロ炭素化合物は、耐薬品性、撥水性などの性質をもち、調理器具や塗装などに用いられています。

原子、分子レベルでこれらの性質を見てみると、フッ素は全原子の中で電気陰性度が最も高く、分極率が低いという特性があります。これらの性質から、テフロンなどのポリフッ化炭素化合物は電子反発しやすく、弱い分子間相互作用を示します。一方で、その高い電気陰性度に起因して、正電荷を帯びた分子と静電相互作用をしやすいといった性質があります。その現象が現れた顕著な例がベンゼン–ヘキサフルオロベンゼン錯体です(図1)[1]。ベンゼン(C6H6)は水素の低い電気陰性度のためベンゼン環上の電子密度が高い(δ)が、ヘキサフルオロベンゼンでは逆の現象が起こり、ベンゼン環上の電子密度はδ+となります。そのため、二つの化合物はお互いのベンゼン環の面が重なるように相互作用し固体を生じます。このような特異な性質から、フッ素を炭素骨格に導入することで現れる性質は化学者の強い興味や関心を集めています。

 

2015-05-16_17-02-37

多フッ素化された化合物例

 

先に挙げたペルフルオロ炭素化合物と比較し、部分的に多フッ素化された炭化水素はどのような性質を示すのでしょう。また、それらフッ素が、ある一方向に並べた場合どうなるのでしょう。分子全体で高極性になり、フッ素同士の電子反発により大きく歪んだ分子になることが予測されます。

最近、St Andrews大学のO’Haganらは上記に挙げた疑問の答えの1つとなるような、シクロヘキサンの片面が全てフッ素化された分子(cis-1,2,3,4,5,6-ヘキサフルオロシクロヘキサン:トップ画像)を独自の合成法で作り上げ、その化合物がもつ性質を明らかにしました。この分子は全てフッ素からなる面と水素からなる面とで真逆の電子密度をもつ、表裏のある分子です。今回はこの分子について紹介したいと思います。

 

“All-cis 1,2,3,4,5,6-hexafluorocyclohexane is a facially polarized cyclohexane”

Keddie, N. S.; Slawin, A. M. Z.; Lebl, T.; Philp, D.; O’Hagan, D. Nature Chem. 2015, 

DOI:10.1038/nchem.2232

 

合成困難化合物: 最も不安定な配座異性体、Fの低い求核性と大きな電子反発

2011年にO’Haganらはシクロヘキサンの炭素が全て一つずつフッ素化された分子bの合成に成功しています[2]。しかし、All-cis-ヘキサフルオロシクロヘキサンの合成には至ってませんでした。All-cis 1,2,3,4,5,6-ヘキサフルオロシクロヘキサンの合成が困難を極める理由は二つあります。

 

1. 化合物自体の基底エネルギーが高い

1,2,3,4,5,6-ヘキサフルオロシクロヘキサンは8種類の立体配置(configuration)をもち、立体配座(conformation)を含めると異性体は15種類に及びます。その中でも今回の目的化合物All-cis-ヘキサフルオロシクロヘキサンcは最も高い基底エネルギーをもち、一番安定な異性体aとは約15 kcal mol-1の差があります (図2)。

2. フッ素の低い求核性と大きな電子反発

後に述べますが、今回の合成ではC–O結合部位に対する逐次的なFのSN2反応を用いて立体選択的に合成する戦略を立案しています。フッ素の低い求核性と電子反発しやすい性質から狙い通りの求核置換反応を行うことは難しいと予想され、特に置換されたフッ素が多くなる合成終盤ではSN2反応よりも脱離反応が優先的に起こる可能性があります。

これらの理由によりAll-cis-ヘキサフルオロシクロヘキサンの合成はこれまで報告がありませんでした。

2015-05-16_17-03-36

 

合成経路

O’Haganらは酸素が全て下側を向いた化合物3(ミオイノシトール(2)から誘導)を鍵中間体とし、C–O結合部位にフッ化物イオンがSN2反応を起こすことでフッ素が全て上向きの分子が合成できると考えました(図 3)。しかし先ほどのAll-cis-ヘキサフルオロシクロヘキサン合成における問題点2にあげたようにFは求核性が低いため、狙い通りSN2反応を進行させるのは困難です。この問題に対し、O’Haganらはまず、3に対してdeoxofluor[3]という高温でも使えるフッ素化試薬を反応させ高収率で4へ誘導しました。その後はマイクロ波照射下トリルエチルアミン三フッ化水素塩(3HF·Et3N)を用いてC–O部位へのSN2反応を進行させています。すなわち、4のエポキシドに対する位置選択的なSN2反応、生じたヒドロキシ基をトリフラートへ変換した後にSN2反応を2度行うことで、12工程、総収率2%で目的のAll-cis-ヘキサフルオロシクロヘキサン(1)の合成を達成しました。合成終盤では適用可能なフッ素化剤が3HF·Et3Nに限られるなど、今回の合成の困難さが伺えます。特に最後の反応では当初懸念していた通り脱離反応も進行したため、低収率にとどまっています。

 

2015-05-16_17-04-24

図3 All-cis-ヘキサフルオロシクロヘキサンの合成

 

どのような性質をもつか?

フッ素を6つももつ化合物ではあるが、X線結晶構造解析により、本分子の構造は意外にもシクロヘキサンと類似し、イス型配座をとることがわかりました(図 4a)。原子同士の電子反発によりaxial位のフッ素同士は外側を向くことが考えられますが、X線構造解析の結果3つのaxial位にあるフッ素は全て平行に配置していました。また量子化学計算により水素側では正電荷、フッ素側では負電荷と二面性を表す化合物であることも明らかになりました。この性質はパッキング構造に大きく反映されており、全ての分子が同一方向を向いています(図 4b, 4c)。表裏でお互いに相対する電荷を帯びていることにより、この分子は既存のアルカン分子の中で最も大きな分子双極子をもちます。その一方で、親水性はなく”強い分極をもつが疎水性の化合物”であることがわかりました。さらに、O’Haganらは温度可変19F NMRを用いてAll-cis-ヘキサフルオロシクロヘキサンの反転障壁を求めた結果、∆H = 13.30.43 kcal mol-1 ∆S = –3.81.6 cal mol-1 K-1となりました (cf: シクロヘキサン; ∆H = 10.8 kcal mol-1, ∆S = 2.8 cal mol-1 K-1)。これらの結果からシクロヘキサンよりも遷移状態は類似しているが、少し不安定化されていることが推測できます。

 

2015-05-16_17-05-13

図4

 

以上によりO’Haganらは今まで誰も合成したことがないAll-cis 1,2,3,4,5,6-hexafluoro- cyclohexaneを合成し、その性質を明らかにしました。X線結晶構造解析の結果、シクロヘキサンとほぼ同じ構造をしていることがわかり、また、この分子は表と裏で逆の電荷を持つことも確認することができました。このように、本研究によってこれまで知られていなかった炭素フッ素化合物の新たな一面が発見されました。

とここまで、書きましたが、一番気になったのは、実はさらに基本的な物性、「この化合物の融点や沸点はいくつなの?」ということです。そもそも常温でX線結晶構造解析を行なっていることから固体であるということが単純な驚きでした。おそらく、融けた瞬間に揮発する、つまり昇華するような化合物であることが予想されます。残念ながら、今回それらの記載はなく、実験項読み取ると0.8mgしか合成していないので、基本的な物性は測れなかったというのが本音でしょう(論文査読でツッコミされなかった?のもすごい)。なにはともあれ、新規化合物の合成は多くの化学者が興味があるところだと思いますので、こういう基礎研究は応援したいと思います。

 

参考文献

  1. Patrick, C. R.; Prosser, G. S. Nature 1960, 187, 1021. DOI: 10.1038/1871021a0
  2. (a) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; O’Hagan, D. Angew. Chem., Int. Ed. 2012, 51, 10086. 
DOI: 10.1002/anie.201205577 (b) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; Kirsch, P.; O’Hagan, D. Chem. Commun. 2011, 47, 8265. DOI:10.1039/C1CC13016A (c) Durie, A. J.; Slawin, A. M. Z.; Lebl, T.; Kirsch, P.; O’Hagan, D. Chem. Commun. 2012, 48, 9643. DOI: 10.1039/C2CC34679F
  3. Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M. Chem. Commun. 1999, 215. DOI: 10.1039/A808517J

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 【サステナブルなものづくり】 マイクロ波の使い方セミナー 〜実験…
  2. ポンコツ博士の海外奮闘録⑩ 〜博士,中和する〜
  3. 日本化学会と対談してきました
  4. エチレンをつかまえて
  5. 研究動画投稿で5000ユーロゲット?「Science in Sh…
  6. アリルC(Sp3)-H結合の直接的ヘテロアリール化
  7. スケールアップのためのインフォマティクス活用 -ラボスケールから…
  8. 第七回ケムステVプレミアレクチャー「触媒との『掛け算』で研究者を…

注目情報

ピックアップ記事

  1. グラクソ、パーキンソン病治療薬「レキップ錠」を販売開始
  2. ヘリウム不足再び?
  3. 第37回 糖・タンパク質の化学から生物学まで―Ben Davis教授
  4. 保護基のお話
  5. 2016年4月の注目化学書籍
  6. ノーマン・アリンジャー Norman A. Allinger
  7. 第6回ICReDD国際シンポジウム開催のお知らせ
  8. 創造化学研究所、環境負荷の少ない実証ベンチプラント稼動へ
  9. Carl Boschの人生 その10
  10. Dead Endを回避せよ!「全合成・極限からの一手」⑨

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年5月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP