[スポンサーリンク]

スポットライトリサーチ

ヒドロゲルの新たな力学強度・温度応答性制御法

[スポンサーリンク]

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致しました。

生命系にゆかりの深い物質として知られるペプチドですが、ある種のものは自己集合をおこしてヒドロゲルを生成し、配列依存の機能を示すバイオマテリアルとしての活用が期待されています。しかしながらその相関については未解明の部分も多くあり、ちょっとした違いが大きな材料特性の差異に結びつくことも珍しくありません。本論文はそうした現象を突き止めた一つであり、Chemistry European Journal誌論文およびFront Cover、さらにプレスリリースとして公開されています。

“Glycine Substitution Effects on the Supramolecular Morphology and Rigidity of Cell‐Adhesive Amphiphilic Peptides”
Ishida, A.; Watanabe, G.; Oshikawa, M.; Ajioka, I.; Muraoka, T. Chem. Eur. J. 2019, 25, 13523. doi:10.1002/chem.201902083

研究室を主宰されている村岡貴博 准教授から、石田さんについての人物評を下記のとおり頂いています。

石田くんは、私が東京農工大学に移り研究室を立ち上げた際の、一期生の一人です。石田くんはとても明るい性格で、最上級生として研究室を引っ張り、飲み会などのイベントを盛り上げてくれる存在です。(飲み会のときの姿とは大きく違って)黙々と実験をし、やると決めたことをすぐにトライする、行動力のある学生です。常にフラスコやサンプル瓶が最密充填(ただの散らかり)された石田くんの実験スペースも、彼の人並み外れた行動力を示すものかと思います。今回論文発表した研究は、構造自由度を高めるグリシン置換がペプチドナノファイバー、およびそれによって形成されるヒドロゲルの特性に与える効果を調べた基礎的な内容です。無数のペプチド分子が規則的にβシート型に集積することでナノファイバーが形成されるため、構造自由度を高めるグリシン置換は、分子集積する上で不利に働き、ゲル強度を下げると予想されます。しかし今回、ペプチド中央のグリシン置換が、意外にもゲル強度を上昇させることを見出しました。一期生として、石田くんは全くのゼロから本プロジェクトを立ち上げてくれましたが、彼の行動力、積み重ねた実験量、そして注意深さと前向きな性格が、この予想外で興味深い発見につながったと思います。

それでも今回も現場からのインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

自己集合性ペプチドヒドロゲルの力学強度の向上と温度に応答したゲル-ゾル転移特性を両立するペプチドデザインを開発することに成功しました。
ペプチドが集合して作られるナノファイバーから形成されるヒドロゲルは、細胞培養材料や組織回復を促進する再生医療材料としての応用が期待されています。ヒドロゲルの力学強度の制御や温度応答性の付与は、利用性を高める上で重要です。一般的には、力学強度を高める場合、疎水性アミノ酸残基を導入し、ペプチド分子間の疎水性相互作用を強くする分子設計が行われます。しかしこの方法では、加熱に応答してゾル化するなどの温度応答性が失われるため、力学強度の向上と温度応答性はトレードオフの関係にあると言えます。今回私達は、ナノファイバーを形成する両親媒性ペプチドの一つのアラニンをグリシンに置換する手法により、意外にも力学強度の向上と温度応答性を両立することが可能であることを実証しました。通常、グリシンへの置換はペプチド分子の柔軟性を高めるため、ナノファイバー構造を不安定化し、ヒドロゲルの力学強度を低下させます。しかし、今回、両親媒性ペプチドの分子中央に位置するアラニンをグリシンに変えた場合は、室温でのゲルの強度が向上するとともに、加熱によりゲル-ゾル転移する温度応答性も見られました。グリシンへ置換したペプチドが、複数のナノファイバーが集合したバンドルを形成しており、この形態の違いによってゲル強度が上昇したと考えられます。グリシン導入によるコンフォメーション自由度の増加が、新たな集合構造の形成と、加熱に応答してゾル化するダイナミクスにつながったと考えています。

図1. 両親媒性ペプチドRADA16の分子中央のアラニンをグリシンへ置換したA8G。A8Gが形成するヒドロゲルは、RADA16のヒドロゲルに比べて約1.8倍高い強度を有する。

図2. A8Gヒドロゲルの温度応答性。加熱によりゲルからゾルへ転移し、冷却すると再びゲルに戻る。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

グリシンへの置換がペプチド集合体の形態に変化を与えることは、MDシミュレーションにより予測していました。しかし、この分子レベルの集合体形態の変化が、ゲルとしてのマクロな物性にこれほど大きな差異を生むことを発見した時は、大変驚くとともに、予想外のことを見出した喜びを感じました。また、透過型電子顕微鏡観察で、グリシンへの置換によって、ファイバー形態が多様に変化していること自分の目で確かめた時は、とても感動しました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

当初は、思うように実験の再現性が取れませんでした。特に、ゲルの力学強度を再現性良く測定することが困難でした。指導教員である村岡准教授とディスカッションを重ね、溶媒や温度、操作などを徹底的に検討することで、再現性良くサンプルを作成する最適な方法を見つけ出しました。

Q4. 将来は化学とどう関わっていきたいですか?

私は、幼少より自らの素朴な疑問を解明してくれる化学に魅力を感じ、化学者の道を志すようになりました。そして、大学で「なぜ?」という物事の本質を突き詰めるような研究を学んできました。
私は、来年から某医療機器メーカーにて研究に携わります。そのため、化学という枠組みは同じでも、学生時代とは関わる分野が異なると思います。ただし、これからも大学での研究活動で得た物事の本質を突き詰める経験を糧に、化学を通じて社会に貢献していきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は、化学者としてはまだまだ未熟で、これからも多くを学ぶ必要がある立場ですが、一つ今回の研究を通じて感じたことは、周囲の人たちとのコミュニケーションの大事さです。今回、私がこのような結果を出すことができたのは、間違いなく村岡准教授と同じ研究室の仲間のサポートやアドバイスがあったからです。実験で問題が生じた際には、村岡准教授と原因や解決につながる可能性を徹底的に話し合いました。研究の進め方についても意見交換することで、納得して実験を行うことができ、こうしたコミュニケーションが研究を前進させる上で欠かせなかったと思います。また、私は村岡研究室の一期生でしたので、研究室の立ち上げからずっと協力してきた同期の存在がとても心強い支えになりました。実験が行き詰まったときなど、辛いときは一人で塞ぎ込んでしまいがちですが、そういう時にこそ皆さんも研究室のメンバーとコミュニケーションを取り、支え合って欲しいです。
最後に、本研究の遂行にあたり、多大なるご助言をいただきました村岡貴博准教授、共同研究でお世話になりました東京医科歯科大学の味岡准教授、北里大学の渡辺助教に改めて感謝申し上げます。

研究者の略歴

左:村岡准教授、右:石田

名前:石田敦也
所属:東京農工大学大学院 工学府 応用化学専攻 有機材料化学専修 修士課程2年(村岡研究室)
研究テーマ:ペプチド集合体の形態と動的特性に与えるグリシン置換効果

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 真理を追求する –2017年度ロレアル-ユネスコ女性科学者日本奨…
  2. 【基礎からわかる/マイクロ波化学(株)ウェビナー】 マイクロ波の…
  3. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ②
  4. 第39回ケムステVシンポ「AIが拓く材料開発の最前線」を開催しま…
  5. 【太陽ホールディングス】新卒採用情報(2025卒)
  6. 2つの触媒と光エネルギーで未踏の化学反応を実現: 芳香族化合物の…
  7. 有機合成化学協会誌2020年4月号:神経活性化合物・高次構造天然…
  8. 第16回 Student Grant Award 募集のご案内

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻き構造形成の仕組みを解明-
  2. 「リジェネロン国際学生科学技術フェア(ISEF)」をご存じですか?
  3. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の設計-前編
  4. 2007年文化勲章・文化功労者決定
  5. 第8回慶應有機化学若手シンポジウム
  6. チャオ=ジュン・リー Chao-Jun Li
  7. 色素・樹脂材料処方設計におけるマテリアルズ・インフォマティクスの活用とは?
  8. ヒュッケル法(前編)~手計算で分子軌道を求めてみた~
  9. アメリカ大学院留学:卒業後の進路とインダストリー就活(1)
  10. 溶液中での安定性と反応性を両立した金ナノ粒子触媒の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP