[スポンサーリンク]

化学者のつぶやき

合成手法に焦点を当てて全合成研究を見る「テトロドトキシン~その1~」

[スポンサーリンク]

ケムステでは数多くの全合成の論文について紹介してきました(リンクに関しては多すぎるので割愛致します)。
(形式)全合成の論文を読む際に、スキームや条件を眺めながら構築段階を追ったり、逆合成解析を見て骨格構築段階や特徴的な官能基がどの段階で導入されるか、どこの官能基がどこのセグメント由来なのかを確認される方は多いと思います。
レビューで全合成研究がまとめられているものはありますが、骨格構築方法や特徴的な官能基、部位の導入法などに焦点を当て、合成のストラテジーを比較をしているところが少ないなと思い、個人的な備忘録の意味も含め書き記すことと致しました(筆者もまだ勉強中の身ですので暖かく見守って頂けると幸いです)。
そこで新たに「合成手法に焦点を当てて全合成研究を見る」と題しまして骨格構築方法や特徴的な官能基、部位の導入法などを数々の有名な化合物、有名な全合成も含め歴史を学びつつ紹介していきたいと思います。形式全合成や合成研究で文献に漏れがある場合にはコメント欄からご指摘頂けますと幸いです。
Reviewのようなまとめ記事を作ることを目的としておりますゆえ、皆様と一緒に作り上げられたらと考えている所存です。

最初の化合物として選びましたのは、単離・構造決定・合成ともに日本人が大活躍してきたテトロドトキシンについてです。
なにを今更という紹介に思えるかもしれませんが、合成反応そのものよりも合成の流れに焦点を当てて反応・戦略をみていきたいと思いますのでおつきあい頂ければと思います。
単離・構造決定までの壮大かつ素晴らしいお話はここで書き記しますと書き切れなくなってしまいますので、割愛させて頂きます。
別サイトにそのお話について詳しく書かれていたのでそちらをご紹介させて頂きます(その1その2)。

構造および主な類縁体

その他多くの類縁構造体が単離されていますが、スペースの関係上ここでは省略致します。

骨格合成、官能基導入における注目点や問題点

  • グアニジノ基の導入のタイミング
  • 高度に酸化された縮環構造の構築方法

ストラテジーの比較

ストラテジーの比較をしやすくするために便宜上TTXの構造の環構造に名前をつけたいと思います。
構造式を再掲しますので下図をご覧ください。


全て炭素原子で構成される母環ともいえるシクロヘキサン環をA環(赤色)、グアニジノ基を含む環をB環(青色)、酸素官能基を含みA環と縮環した環をC環(黄緑色)とします。
これらの環の構築順序、構築に用いた鍵反応などを比較することでそれぞれの合成の特徴を捉えることができると思います。

1972年 岸らによる初の全合成[1]~[4]

まず全合成のストラテジーを比較するには最初の合成研究から学ぶ必要があります。
先生によるテトラドトキシンの初の全合成は大変有名であるため、皆さんも一度見たことがあるのではないでしょうか。
では再確認もかねて、岸先生の鍵工程・他の合成に関わる部分をご紹介します。
岸らは全合成を行うにあたり、まずA環部とC環部を最初に構築することとしました。

この際、C環部を炭素環の酸化後に開裂、巻き直したものと捉えています。
すなわち、Diels–Alder反応によって合成した核間位にオキシム基を有する化合物からBeckmann転位によって核間位にアミノ基有するキノンへと誘導し、この6員環をC環部と見なしているのです。
そのため、A環部のみに着目すると、C環等価構造とみなしたシクロヘキセン環を酸素官能基を導入された2つの側鎖と考えれば、A環部の高度に置換・酸化された構造を構築できそうに思えてきます。
このような古典的な手法とその後を見据えた合成経路の確立を最初に、しかも1970年代に行ったということに、非常に高い逆合成解析力を感じました。

次にC環構築部を見てみます。
そこから官能基変換を多数はさみ、次図左の化合物となります(ここからはどこがTTXのどこに対応しているかも一緒に見て頂くため、環の色と構造部分の色を対応させています)。

m-CPBAと酢酸系試薬を巧みに用いることで、C環の構築ならびにヒドロキシ基のアセチル保護まで行っています。
黄緑色の部分に着目し、左上まで辿ってみてください。最初にDiels–Alder反応によって構築したシクロヘキセン環がこのように活きています。
また、キノンが有するカルボニル基や二重結合を利用してエポキシ化した部分も、ヒドロキシ基としてしっかりと活用されています。

では最後のB環構築部を見てみましょう。数工程進んだ次のスキームをご覧ください。

 

アミノ基をグアニジノ基へと変換し、C環構築時にアセタール構造となった部分を脱水してできたエノール構造を元にジヒドロキシル化、つづく過ヨウ素酸分解を行いました。
これにより、B環構築に必要なヘミアミナール等価構造ができあがりました。
最後は不必要なエステル部を加水分解することで、ヘミアミナール構造へと一気に変換されTTXの全合成が達成されました。全32工程、総収率0.7%でした。
お気づきでしたでしょうか?このヘミアミナール構造へと誘導するのに必要であったアルデヒド基の炭素は元々Diels–Alder反応によって導入したブタジエンの炭素であり、その結合はDiels–Alder反応によって構築した結合なのです。
筆者が浅学であるからではないと信じたいのですが、こうしたことを見据えたこの全合成はもはや芸術の域に達していると感じました。

最後に岸らの合成の鍵工程をまとめます。

  • Diels–Alder反応(A環の擬似的官能基変換と、B環構築に必要な結合および炭素の導入、C環構築可能となる炭素鎖の導入)
  • Beckmann反応(B環構築に必要な核間位アミノ基の導入)
  • エポキシドの開環を伴うアセトキシ基の求核置換反応(C環の構築)
  • ジヒドロキシル化、過ヨウ素酸分解(B環の構築)

次の合成に、とうつりたいところですがこの時点でだいぶ分量が多くなってしまいましたので、続きは次回にしたいと思います。
次回は2例目の磯部先生らによる全合成以降を記す予定です。

 

訂正(2018.05.16)

テトロドトキシンの構造に一部誤りがあり、訂正させて頂きました。関連する研究を行う皆様、申し訳ございませんでした。
また、コメントにてご指摘頂いた方、ありがとうございました。

参考文献

  1. Y. Kishi, F. Nakatsubo, M. Aratani, T. Coto, S. Inoue, H. Kakoi, S. Sugiura, Tetrahedron Lett.1970, 11, 5127-5128.
    DOI: 10.1016/S0040-4039(00)96956-9
  2. Y. Kishi, F. Nakatsubo, M. Aratani, T. Goto, S. Inoue, H. Kakoi, Tetrahedron Lett.1970, 11, 5129-5132.
    DOI: 10.1016/S0040-4039(00)96957-0
  3. Y. Kishi, M. Aratani, T. Fukuyama, S. Inoue, H. Tanino, S. Sugiura, H. Kakoi, J. Am. Chem. Soc.197292, 9217-9219.
    DOI: 10.1021/ja00781a038
  4. Y. Kishi, J. Syn. Org. Chem. Jpn.197432, 855-860.
    DOI: 10.5059/yukigoseikyokaishi.32.855

関連書籍

gladsaxe

投稿者の記事一覧

コアスタッフで有りながらケムステのファンの一人。薬理化合物の合成・天然物の全合成・反応開発・計算化学を扱っているしがない助教です。学生だったのがもう教員も数年目になってしまいました。時間は早い。。。

関連記事

  1. トランジスタの三本足を使ってsp2骨格の分子模型をつくる
  2. 有機化学実験基礎講座、絶賛公開中!
  3. フラーレンの単官能基化
  4. 第三級アミン酸化の従来型選択性を打破~Auナノ粒子触媒上での協奏…
  5. 金ナノクラスター表面の自己組織化単分子膜を利用したテトラセンの高…
  6. 【環境・化学分野/ウェビナー】マイクロ波による次世代製造 (プラ…
  7. 今年も出ます!!サイエンスアゴラ2015
  8. 二丁拳銃をたずさえ帰ってきた魔弾の射手

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 実験器具・設備の価格を知っておきましょう
  2. トムソン:2008年ノーベル賞の有力候補者を発表
  3. 元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」
  4. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくある失敗とその対策とは?
  5. チェーンウォーキングを活用し、ホウ素2つを離れた位置へ導入する!
  6. 実験化学のピアレビューブログ: Blog Syn
  7. 第40回「分子エレクトロニクスの新たなプラットフォームを目指して」Paul Low教授
  8. 仙台の高校生だって負けてません!
  9. 化学企業のグローバル・トップ50が発表【2018年版】
  10. ポットエコノミー Pot Economy

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年5月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

マテリアルズ・インフォマティクスと持続可能性: 環境課題の解決策

開催日:2024/05/29 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Christoper Uyeda教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催された「…

有機合成化学協会誌2024年5月号:「分子設計・編集・合成科学のイノベーション」特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年5月号がオンライン公開されています。…

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP