[スポンサーリンク]

化学者のつぶやき

カルボカチオンの華麗なリレー:ブラシラン類の新たな生合成経路

[スポンサーリンク]

反応経路の自動探索によりセスキテルペンのトリコブラシレノールの新たな全生合成経路が提唱された。

トリコブラシレノールの生合成経路

多彩で複雑なテルペン骨格は、テルペン環化酵素内で起こるカルボカチオンの連続的な移動により一挙に構築される。その過程はカルボカチオンの安定性に関する知見を与えるため、古来より研究されてきた。近年、計算化学の発展に伴い、様々なテルペン類の生合成経路が提唱されている[1]
ブラシラン類は天然に広く存在する、5/6員環骨格をもつセスキテルペンである(図1A)。特に骨格上のメチル基の数が、生合成前駆体のファネシル二リン酸(FPP)と異なる点で、他のセスキテルペン類には見られない稀有な構造をもつ[2]。その生合成はFPPから誘導される11員環のフムリルカチオン(IM2)を経由することが知られるが、その後の経路は未解明であった。2019年に東京大学の葛山らは、同位体標識実験によってブラシラン類の一種であるトリコブラシレノール(1)の生合成経路を推定した(図1B)[3]。彼らはIM2から生成した5/7/3員環骨格をもつIM6に対する水和反応が進行すると予想した。しかし、本生合成仮説は熱的に禁制なスプラ面型1,3-水素移動を伴う、高度に歪んだ遷移状態Aを経由しており、その妥当性の検証が待たれていた。
今回、千葉大学の佐藤と東京大学の内山らは人工力誘起反応法(AFIR)[4]を用いて反応経路を網羅的に探索することにより、1の生合成経路を新たに提唱した(図1C)。IM6からカルボカチオンが次々と移動する骨格転位により5/6員環骨格をもつIM7へ至る経路を発見した。

図1. (A) ブラシラン類の基本骨格 (B) 葛山らが提唱した1の生合成経路 (C) 今回の生合成経路

 

“DFT Study of a Missing Piece in Brasilane-Type Structure Biosynthesis: An Unusual Skeletal Rearrangement”
Sato, H.; Hashishin, T.; Kanazawa, J.; Miyamoto, K.; Uchiyama, M. J. Am. Chem. Soc. 2020, 142, 19830–19834. DOI: 10.1021/jacs.0c09616

論文著者の紹介


研究者: 佐藤玄
研究者の経歴:
2013–2016 東京大学 大学院薬学系研究科 博士課程修了 (内山真伸教授)
2016–2018 千葉大学 大学院薬学研究員 特任研究員
2018–2020 千葉大学 大学院薬学研究員 特任助教
2020–           千葉大学 大学院薬学研究員 学術振興会 特別研究員(PD)
2021- 山梨大学 工学部 応用化学科 特任助教(PI)(JSPS 卓越研究員)
研究内容: 計算化学を用いたテルペンの生合成経路の探索

研究者: 内山真伸
研究者の経歴(一部抜粋):
1995–2001 東北大学 大学院薬学系研究科 助手 (坂本尚夫教授)
1998 東京大学 大学院薬学系研究科 博士課程修了 (首藤紘一教授)
2001–2003 東京大学 大学院薬学系研究科 助手
2003–2006 東京大学 大学院薬学系研究科 講師
2006–2010理化学研究所 中央研究所 准主任研究員
2010–           東京大学 大学院薬学系研究科 教授(本務)
2010–           理化学研究所 チームリーダー(兼務)
2013–           理化学研究所 開拓研究本部 内山元素化学研究室 主任研究員(兼務)
2019–           信州大学 先鋭材料研究所(RISM) 教授(クロスアポイントメント)
研究内容: 機能性アート錯体の創製とその応用、理論計算による反応設計、物質創製、機能創発など

論文の概要

筆者らはDFT計算とAFIR法を併用して、1の生合成における全反応経路を探索した。その結果、1は(i) 5/7/3員環の構築(IM2~IM5)、(ii) IM6bの骨格転位に伴う5/6員環の構築(IM6b~IM7a)、(iii) 生じたアリルカチオンIM8へのSN2’型の水和、の三段階で形成されることが分かった(図2A)。各構造のエネルギー計算により、これら全ての反応は室温下で容易に進行しうることが示唆された。
さらに固有反応座標(IRC)計算により(ii)の詳細な機構が提唱された(図2B)。IM6bのシクロプロピルカチオンの環拡大によるシクロブチルカチオンの形成(shoulder_6b–7a)、C8–C9結合の開裂(TS_6b–7a)、イソプロペニル基の1,2-転位(shoulder2_6b–7a)が一挙に起こり、IM7aを与える。これらの構造におけるC6,7,8,9炭素間の結合長と各炭素原子上のNPA電荷の分布も本機構を支持している。また、shoulder_6b–7aのC3位エピマー、IM7/IM8のC2位エピマーはそれぞれ同じブラシラン類のトレホランA, コノセファレノールの生合成における中間体となることが示唆された(図2C)。

図2. (A) 1の生合成経路 (B) (ii)のIRC計算 (C) 他のブラシレン類の推定生合成経路

以上、長らく不明であったトリコブラシレノールの生合成経路が計算化学を用いて提唱された。本研究により、天然物の生合成におけるカルボカチオンの新たな反応性が解明されることに期待したい。

用語説明

人工力誘起反応法(Artificial Force Induced Reaction; AFIR)
量子化学計算において、効率的に反応経路を探索する手法の一つ[4]。仮想的な力を加えて分子同士を接近させ両者が反応する過程を探索する。その際に得られた反応経路を元に本来の反応過程を予測する方法。
NPA (Natural Population Analysis)
Weihholdらが開発した、原子の電荷密度を見積もる手法[5]
固有反応座標(Intrinsic Reaction Coordinate; IRC)計算
ポテンシャルエネルギー曲面(Potential Energy Surface; PES)における鞍点である遷移状態から、エネルギーが最も減少する方向に構造を連続的に変化させることで、その遷移状態を経由する反応の原系と生成系を導く手法。

参考文献

  1. (a) Isegawa, M.; Maeda, S.; Tantillo, D. J.; Morokuma, K. Predicting Pathways for Terpene Formation from First Principles–Routes to Known and New Sesquiterpenes. Chem. Sci. 2014, 5, 1555–1560. DOI: 10.1039/c3sc53293c (b) Sato, H.; Teramoto, K.; Masumoto, Y.; Tezuka, N.; Sakai, K.; Ueda, S.; Totsuka, Y.; Shinada, T.; Nishiyama, M.; Wang, C.; Kuzuyama, T.; Uchiyama, M. “Cation-Stitching Cascade”: Exquisite Control of Terpene Cyclization in Cyclooctatin Biosynthesis. Sci. Rep. 2015, 5, 18471. DOI: 10.1038/srep18471 (c) Sato, H.; Narita, K.; Minami, A.; Yamazaki, M.; Wang, C.; Suemune, H.; Nagano, S.; Tomita, T.; Oikawa, H.; Uchiyama, M. Theoretical Study of Sesterfisherol Biosynthesis: Computational Prediction of Key Amino Acid Residue in Terpene Synthase. Sci. Rep. 2018, 8, 2473. DOI: 10.1038/s41598-018-20916-x (d) Sato, H.; Yamazaki, M.; Uchiyama, M. DFT Study on the Biosynthesis of Preasperterpenoid A: Role of Secondary Carbocations in the Carbocation Cascade. Chem. Pharm. Bull. 2020, 68, 487–490. DOI: 10.1248/cpb.c20-00037
  2. (a) Wu, Z.; Li, D.; Zeng, F.; Tong, Q.; Zheng, Y.; Liu, J.; Zhou, Q.; Li, X.-N.; Chen, C.; Lai, Y.; Zhu, H.; Zhang, Y. Brasilane Sesquiterpenoids and Dihydrobenzofuran Derivatives from Aspergillus Terreus [CFCC 81836]. Phytochemistry 2018156, 159–166. DOI: 1016/j.phytochem.2018.10.006(b) 他に5つのメチル基を有するセスキテルペンとしてpicrotoxane, marasmaneがあるが、数は限られている[3]
  3. Murai, K.; Lauterbach, L.; Teramoto, K.; Quan, Z.; Barra, L.; Yamamoto, T.; Nonaka, K.; Shiomi, K.; Nishiyama, M.; Kuzuyama, T.; Dickschat, J. S. An Unusual Skeletal Rearrangement in the Biosynthesis of the Sesquiterpene Trichobrasilenol from Trichoderma. Angew. Chem., Int. Ed. 2019, 58, 15046–15050. DOI: 10.1002/anie.201907964
  4. Maeda, S.; Ohno, K.; Morokuma, K. Systematic Exploration of the Mechanism of Chemical Reactions: the Global Reaction Route Mapping (GRRM) Strategy Using the ADDF and AFIR Methods. Chem. Chem. Phys. 2013, 15, 3683–3701. DOI: 10.1039/C3CP44063J
  5. Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. Chem. Phys. 1985, 83, 735–746. DOI: 10.1063/1.449486
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 植物毒素の全合成と細胞死におけるオルガネラの現象発見
  2. 産総研の研究室見学に行ってきました!~採用情報や研究の現場につい…
  3. プロドラッグの話
  4. なれない人たちの言い訳(?)-研究者版-
  5. pH応答性硫化水素ドナー分子の開発
  6. 高い発光性を示すヘリセンの迅速的合成
  7. 即戦力のコンパクトFTIR:IRSpirit
  8. 共有結合性有機構造体(COF)の新規合成・薄膜化手法を開発

注目情報

ピックアップ記事

  1. NeoCube 「ネオキューブ」
  2. Pixiv発!秀作化学イラスト集【Part 1】
  3. 有機化学者の仕事:製薬会社
  4. Essential細胞生物学
  5. ポンコツ博士の海外奮闘録 〜留学サバイバルTips〜
  6. 高知市で「化学界の権威」を紹介する展示が開催中
  7. ダルツェンス縮合反応 Darzens Condensation
  8. チエナマイシン /thienamycin
  9. MFCA -環境調和の指標、負のコストの見える化-
  10. 対称性に着目したモデルに基づいてナノ物質の周期律を発見

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP