[スポンサーリンク]

chemglossary

生物学的等価体 Bioisostere

[スポンサーリンク]

医薬分子において生物学的に同じ役割を果たす他の部分構造を生物学的等価体(bioisostere)と呼ぶ[1, 2]。薬物の主要生物活性に影響を与えることなく、医薬に含まれる官能基を他のもので置換えることで、医薬特性を改善させる目的に有効となる考え方。


歴史的経緯

等価性(isosterism)という用語自体は1919年に物理学者のIrving Langmuirによって導入された。主に物理化学的観点からの関連性に主眼を置いた概念であった。

1932年にErlenmeyerらが報告した一連の詳細な研究から、分子の最外殻電子配置が同じであるものを等価体としてみなすことで、生物学上の問題に対して適用可能であることが示された。

1951にはHarris Friedmanが、物理化学的類似性によらず化合物に共通の生物学的性質があることを指す用語として”bioisostere”を導入した。

創薬化学の分野では、1979年にThornberが提唱したより幅広い定義、すなわち以下のものが一般的に受け入れられている。

「広く同様な生物的効果を示し、化学的及び物理的な類似性を有する官能基や分子」

具体例

立体的あるいは電子的性質が類似している官能基同士に生物活性類似性が認められる場合が多い。

たとえば医薬分子中のカルボキシル基はスルホンアミド、リン酸エステル、テトラゾールなどで置換えることができる。

bioisostere_1

元素単位で言えば、水素と立体的に類似しているが代謝抵抗性を持つ重水素、電気的性質を逆転させうるフッ素置換も生物学的等価体の例として捉えることができる。ケイ素原子も炭素の生物学的等価体として扱える[3]。

bioisostere_3

ペプチド結合は体内に存在するプロテアーゼなどで分解されやすいため、置換アルケンやヒドロキシエチルアミン構造などに置き換えることで、薬物動態に改善をもたらすことができる。この場合はとくにペプチドミメティクスと呼称される[4]。

bioisostere_2
最近ではオキセタン骨格がカルボニル基[5]、ビシクロ[1.1.1]ペンタン骨格がベンゼン環と置換可能(冒頭図)[6]であることなども示されつつある。

 

関連文献

  1. “Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design” Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. DOI: 10.1021/jm1013693
  2. “Bioisosterism:  A Rational Approach in Drug Design” Patani, G. A.; LaVoie, E. J. Chem. Rev. 1996, 96, 3147. DOI: 10.1021/cr950066q
  3. “Organosilicon Molecules with Medicinal Applications” Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388. DOI: 10.1021/jm3010114
  4.  “ペプチドミメティックによる創薬研究” 鳴海哲夫,玉村啓和, 生化学 2010, 82, 515. [PDF]
  5.  “Oxetanes as Versatile Elements in Drug Discovery and Synthesis” Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Carreira, E. M. Angew. Chem. Int. Ed. 2010, 49, 9052. DOI: 10.1002/anie.200907155
  6. “Application of the Bicyclo[1.1.1]pentane Motif as a Nonclassical Phenyl Ring Bioisostere in the Design of a Potent and Orally Active γ-Secretase Inhibitor” Stepan, A. F. et al. J. Med. Chem. 2012, 55, 3414. DOI: 10.1021/jm300094u

関連書籍

[amazonjs asin=”B00DF3U7FC” locale=”JP” title=”Bioisosteres in Medicinal Chemistry, Volume 54 (Methods and Principles in Medicinal Chemistry)”][amazonjs asin=”0124172059″ locale=”JP” title=”The Practice of Medicinal Chemistry, Fourth Edition”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の…
  2. クライン・プレログ表記法 Klyne-Prelog Nomenc…
  3. 真空ポンプ
  4. 熱活性化遅延蛍光 Thermally Activated Del…
  5. リガンド効率 Ligand Efficiency
  6. ケミカルジェネティクス chemical genetics
  7. 深共晶溶媒 Deep Eutectic Solvent
  8. リピンスキーの「ルール・オブ・ファイブ」 Lipinski…

注目情報

ピックアップ記事

  1. 光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発
  2. MOF 結晶表面の敏感な応答をリアルタイム観察
  3. SchultzとKay: 米スクリプス研究所のトップへ
  4. 私がケムステスタッフになったワケ(3)
  5. Medical Gases: Production, Applications, and Safety
  6. 武田薬、米国販売不振で11年ぶり減益 3月期連結決算
  7. 発見が困難なガンを放射性医薬品で可視化することに成功
  8. 化学物質の管理が厳格化! -リスクアセスメント-
  9. 付設展示会に行…けなくなっちゃった(泣)
  10. Density Functional Theory in Quantum Chemistry

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年12月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP