[スポンサーリンク]

スポットライトリサーチ

天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる?

[スポンサーリンク]

第213回のスポットライトリサーチは、鳥取大学大学院 工学研究科・稲葉 央 助教にお願いしました。

稲葉先生の所属する松浦研究室では、人工的に設計したペプチドの自己集合を活用して巨大な構造体を合成し、それをカプセルのように使うという研究にチャレンジしています(紹介漫画 が分かりやすいので、ぜひご覧下さい!)。今回紹介する内容はこれまで培ったペプチド構造学の知見を生かし、自然界が生み出したさらに巨大な構造体「微小管」をナノチューブとして捉え、その中に好きなものを入れられないか?との考えから取り組まれた成果です。本成果はChem. Commun.誌原著論文として公開され、プレスリリースChem. Commun. Front Cover(アイキャッチ画像)として取り上げられています。

“Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide”
Inaba, H.*; Yamamoto, T.; Iwasaki, T.; Kabir, A. M. R.; Kakugo, A.; Sada, K.; Matsuura, K.* Chem. Commun. 2019, 55, 9072-9075. doi:10.1039/C9CC04345D

研究室を主宰されています松浦和則 教授から、稲葉先生について以下の人物評を頂いております。

稲葉君は、どんな学生に対しても面倒見の良い研究指導をしており、学生からの評判も高い助教です。微小管の研究は、私の「微小管の中に何か入れたい」という無茶振りにより、何もわからない状況からスタートした研究ですが、稲葉君が独自に調査・検討して微小管内包ペプチドの創製に成功しました。研究に対する調査能力・洞察力が高く、将来の生体機能関連化学分野をリードする若手研究者として注目される人材だと思います。

それでは今回も、現場からのコメントをお楽しみ下さい!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

我々が開発したペプチドを用いることで、タンパク質ナノチューブ「微小管」の中に緑色蛍光タンパク質GFPを入れることに成功しました。微小管は私たちの細胞内にも存在するナノチューブで、内径15 nm程度の「穴」を持っています。微小管は抗がん剤の標的やデバイス応用など多くの分野で注目を集めていますが、この穴はほとんど着目されてきませんでした。今回我々は、微小管内壁に結合するTau由来ペプチドTP[1]をGFPに連結することで、微小管内部へのGFPの導入にはじめて成功しました。面白いことに、TPを連結したGFP(TP-GFP)を内包した微小管は通常の微小管に比べて長く剛直で、モータータンパク質を固定した基板における運動速度が増加することが明らかとなりました。微小管の形成の促進、解離の阻害も見られ、GFPが裏打ちのような形で結合して微小管を安定化していると考えられます。本研究は微小管の「中」を理解して応用する第一歩となります。

図1. Tau由来ペプチド(TP)を用いた微小管へのGFP内包とその蛍光像

図2. TP-GFP内包微小管の物性

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

正直なところ、この研究の基となった微小管内壁に結合するペプチドの開発の方が大変で、工夫が必要でした [1]。着任後、微小管について何もわからない0からのスタートで、そもそも微小管がうまくできないという初歩的なところから始めたのを覚えています。微小管内部への結合をどうやって調べるかも含め、当時の四年生と試行錯誤を繰り返していました。今回の研究は、「微小管の中に結合するペプチドが見つかったし、同じ方法でタンパク質でも入れてみよう」という単純な発想で始まりました。その時点ではGFPの内包により微小管が安定化することを予期していた訳ではなく、結果的に面白い現象が見つかった、という「驚き」をくれた点で愛着があります。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

前述した先行研究で内包の方法については詳しく調べていたので、内包の実験自体はそれほど問題ありませんでした。ただ、GFPが微小管に結合しているかどうかは蛍光顕微鏡ですぐにわかりますが、実際に微小管の「中」に導入されているかどうかを確かめるのには苦労しました。色々な方法を試した結果、最終的には「抗GFP抗体が結合できない位置、すなわち微小管の内部にGFPは結合している」という間接的な方法で微小管への内包を示しています。このあたりはまだ改善の余地があると考えています。

Q4. 将来は化学とどう関わっていきたいですか?

私の研究のベースにあるのは「生体分子で面白いものを作りたい」というシンプルな考えです。生物はペプチドやタンパク質などの生体分子を用いて緻密な化学を展開しています。これら天然のお手本から学び、化学の力で手を加えて「いじる」ことで面白いものづくりをしていきたいと考えています[2]。本研究で用いたペプチドでいえば、最近細胞内の微小管にも結合することがわかってきました [3] 。将来的に細胞内の微小管を好き勝手にいじって細胞自体の性質を変えることができるかもしれません。自分が設計した通り分子が動いてくれるのももちろん魅力的ですが、今回の研究のような予期せぬ発見も楽しみにして(見逃さずよう)研究を進めていきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は期せずして研究場所やテーマを変えてきましたが、周りの人に比べて思うように成果が出せずに苦しんだ経験があります(今もですが、、)。それでもなんとかやってこられたのは、周りのサポートはもちろんですが、これまで世界になかった研究をしているという自分なりの自負(のようなもの)があったからです。他人は他人として、自分のテーマに責任とこだわりを持ってやっていればいつかいい目を見ることもある、と信じることが大事かと思います(自分にも言い聞かせています)。
最後に、日頃からご指導いただいている松浦教授、いつも共同研究でお世話になっている北海道大学のKabir特任助教、角五准教授、佐田教授、鳥取大学農学部の岩崎准教授に改めて感謝申し上げます。

参考文献

  1. H. Inaba, T. Yamamoto, A. M. R. Kabir, A. Kakugo, K. Sada, K. Matsuura, Chem. Eur. J. 2018, 24, 14958.
  2. H. Inaba, K. Matsuura, Chem. Rec. 2019, 19, 843.
  3. H. Inaba, T. Yamamoto, T. Iwasaki, A. M. R. Kabir, A. Kakugo, K. Sada, K. Matsuura, ACS Omega 2019, 4, 11245.

研究者の略歴

【名前】稲葉 央(いなば ひろし)
【所属】鳥取大学 学術研究院工学系部門 助教
【研究テーマ】ペプチドを基軸とした微小管内部空間の機能開拓
【略歴】
2011.3 名古屋大学 大学院理学研究科 物質理学専攻 博士前期課程修了(渡辺芳人研究室)
2014.9 京都大学 大学院工学研究科 合成・生物化学専攻 博士後期課程単位取得退学(北川進研究室)JSPS特別研究員(DC2)
2015.1 博士(工学)
2015.1–2016.2 イリノイ大学アーバナ・シャンペーン校化学科 博士研究員(Jefferson Chan研究室)
2016.3–現在 鳥取大学 大学院工学研究科 化学・生物応用工学専攻 助教(松浦和則研究室

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくあ…
  2. 動画:知られざる元素の驚きの性質
  3. 第34回ケムステVシンポ「日本のクリックケミストリー」を開催しま…
  4. ゲルマニウムビニリデン
  5. フリー素材の化学イラストを使ってみよう!
  6. 特許の基礎知識(3) 方法特許に注意! カリクレイン事件の紹介…
  7. 高速原子間力顕微鏡による溶解過程の中間状態の発見
  8. ぼっち学会参加の極意

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ケミカル数独
  2. マグネシウム Magnesium-にがりの成分から軽量化合物材料まで
  3. 化学Webギャラリー@Flickr 【Part1】
  4. 阪大で2億7千万円超の研究費不正経理が発覚
  5. 有機合成化学協会誌10月号:不飽和脂肪酸代謝産物・フタロシアニン・トリアジン・アルカロイド・有機結晶
  6. 翻訳アルゴリズムで化学反応を予測、IBMの研究者が発表
  7. オマー・ヤギー Omar M. Yaghi
  8. コルベ・シュミット反応 Kolbe-Schmitt Reaction
  9. イミノアルキンと共役ジエンの形式的[4+1]アニュレーションによる多置換ピロール合成
  10. CO酸化触媒として機能する、“無保護”合金型ナノ粒子を担持した基板を、ワンプロセスで調製する手法を開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【6月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスを用いた架橋剤としての利用(溶剤系)

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/06/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

N-オキシドの性質と創薬における活用

N-オキシドは一部の天然物に含まれ、食品・医薬品などの代謝物にも見られるほか、医…

未来を切り拓く創薬DX:多角的な視点から探る最新トレンド

申込みはこちら次世代の創薬研究をリードするために、デジタルトランスフォーメーション(DX…

ファラデーのつくった世界!:−ロウソクの科学が歴史を変えた

こんにちは、Spectol21です!ノーベル賞受賞の吉野彰先生が、吉野先生の研究者と…

接着系材料におけるmiHub活用事例とCSサポートのご紹介

開催日:2024/06/12 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

水素原子一個で強力な触媒をケージング ――アルツハイマー病関連のアミロイドを低分子で副作用を抑えて分解する――

第 619 回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学…

ミツバチに付くダニに効く化学物質の研究開発のはなし

今回は東京大学大学院有機化学研究室 滝川 浩郷先生、小倉 由資先生が主導されている研究内容につき…

化学結合の常識が変わる可能性!形成や切断よりも「回転」プロセスが実は難しい有機反応

第 617 回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 有機…

【書評】元素楽章ー擬人化でわかる元素の世界

元素の特性に基づくキャラクターデザインとフィクションの要素を融合させ,物語にまで昇華させた,待望…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP