[スポンサーリンク]

スポットライトリサーチ

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

[スポンサーリンク]

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. Sessler 教授)平尾 岳大(ひらお たけひろ)さんです。

平尾さんは、2016年3月に広島大学大学院理学研究科 灰野岳晴教授のもとで博士を取得された後、テキサス大学で博士研究員をなされています。

今回紹介させていただく研究は、平尾さんが学生時に灰野研究室でされていたものです。灰野研究室では、超分子を用いた分子認識化学、おもに超分子ポリマーの合成と機能創製をテーマに研究が行われています。また、グラフェンの機能化などの研究も展開されています。

平尾さんの成果はこの度Nature Communications誌に掲載され、プレスリリースとしても発表されました。

Takehiro Hirao, Hiroaki Kudo, Tomoko Amimoto & Takeharu Haino

”Sequence-controlled supramolecular terpolymerization directed by specific molecular recognitions”

Nature Commun. 20178, 634. DOI: 10.1038/s41467-017-00683-5

原著論文はオープンアクセスとなっていますので、ぜひご覧ください。平尾さんの益々のご活躍を楽しみにしています!

Q1. 今回のプレスリリースの対象となったのはどんな研究ですか?

ポリマーの性質はモノマー分子の配列に大きく依存します。従って,望みの性質をもつポリマーを合成するためには,モノマー分子の配列を制御することが重要になります。これまでに規則的なモノマー配列をもつポリマーが数多く報告されてきました。しかしながら,三種類以上のモノマー分子を規則的にポリマー主鎖に組み込むことは現在においても非常に困難です。我々は超分子化学を用いてこの課題に挑戦しました。

本研究グループはカリックス[5]アレーンがフラーレン,ビスポルフィリンがトリニトロフルオレノンを選択的に包接することを見出しました。また,ハミルトン型ホスト分子が水素結合によりバルビツレートを強く包接することが知られています。これら三種類の超分子錯体に着目し,お互いに結合しないホスト部位とゲスト部位を導入したモノマー分子A, B, Cを合成しました。A, B, Cを溶液中で混合することで,選択的包接が起こり,主鎖にA-B-Cの繰り返し配列を有する超分子ポリマーが得られました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

ひとつ挙げるなら,分子設計です。

一般的なポリマーはモノマー分子が共有結合で繋がっています。一方,超分子ポリマーは水素結合などの弱い結合で繋がっています。従って,溶液に溶かした状態で,本当に長く繋がったポリマー構造を維持しているのかどうか詳細に調べる必要がありました。溶液中での実験を詳細に行うためには,ある程度の溶解度が不可欠ですが,今回用いたホスト部位とゲスト部位はそれ単体では溶解度が高いものではありませんでした。分子全体として高い溶解度をもたせるため,長鎖アルキル基をどこに導入することができるか常に考えながら合成を行いました。

その結果,溶液中における実験を行うに充分な溶解度をもつ分子を合成することができ,気相中および固体状態だけでなく溶液中においても超分子ポリマーが形成していることを明らかにすることができました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

目的化合物の合成に一番苦労しました。

本研究で用いるモノマー分子は,大きな空孔をもっています。用いた反応はどれも一般的なものですが,反応基質が空孔に取り込まれてしまうためか,合成の順番を変えると全く反応が進行しなくなることもありました。反応が進行する条件を何度も検討する必要があったのですが,今回用いた分子は,それぞれ二十段階以上の合成過程を有しています。そのため,反応条件を検討するところにたどり着くだけで苦労した記憶があります。無制限に時間があるわけではないので,三種類のモノマー分子になるべく同じ骨格を使い,合成の時間を節約することでなんとか合成経路を確立することができました。

Q4. 将来は化学とどう関わっていきたいですか?

将来,自分が何をしているか全くわかりませんが,今後も研究者として化学と関わっていきたいです。有機化学研究には自分で分子を設計し,自分の手で創り出すという楽しさがあります。自分で創った分子が思っていた通りのはたらき,時には思いもよらなかったはたらきを見せた時の感動はそれまでの苦労を忘れさせてくれるほどです。私にとっては,これだけで研究を続けたいと思うに充分な理由でした。そして願わくは,誰かの記憶の片隅に残るような成果を発信し続けていければと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

本研究で示したアイディアは,ポリマー鎖に組み込まれた分子の順番を自在に制御するという究極の目標に対して,ひとつの通過点にすぎません。しかし一方で,査読していただいた化学者に認められて論文として発表することができた,ひとつの到達点でもあります。そこへ至るまでの道のりは決して平坦ではありませんでしたが,周囲の支えによってなんとか辿り着くことができました。自分を支えてくれる周りの方々への感謝を忘れず,お互い一歩一歩踏みしめていきましょう。きっとその一歩は,まだ誰も知らない科学者全体の”最終到達点”へとつながっているはずです。

 

研究者の略歴

名前:平尾 岳大(ひらお たけひろ)

現在の所属:テキサス大学オースティン校 博士研究員(Jonathan L. Sessler 教授)

現在の研究テーマ:分子スイッチを基盤としたロジック•デバイスの開発

【略歴】
2011年3月 広島大学理学部卒業(灰野岳晴 教授)
2013年3月 広島大学大学院理学研究科 博士課程前期修了(灰野岳晴 教授)
2013年4月—2016年3月 日本学術振興会特別研究員 (DC1)
2016年3月 広島大学大学院理学研究科 博士課程後期修了(灰野岳晴 教授)
2016年4月—現職

関連リンク

関連記事

  1. イナミドを縮合剤とする新規アミド形成法
  2. 進撃のタイプウェル
  3. ノーベル化学賞は化学者の手に
  4. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  5. Actinophyllic Acidの全合成
  6. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  7. 理想のフェノール合成を目指して~ベンゼンからフェノールへの直接変…
  8. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 個性あふれるTOC大集合!
  2. スクラウプ キノリン合成 Skraup Quinoline Synthesis
  3. 国際化学オリンピックのお手伝いをしよう!
  4. 水分子が見えた! ー原子間力顕微鏡を用いた水分子ネットワークの観察ー
  5. 日本学士院賞・受賞化学者一覧
  6. 今年の光学活性化合物シンポジウム
  7. 染色体分裂で活躍するタンパク質“コンデンシン”の正体は分子モーターだった!
  8. 水中で光を当てると水素が湧き出るフィルム
  9. 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン:1,5,7-Triazabicyclo[4.4.0]dec-5-ene
  10. 化学英語論文/レポート執筆に役立つPCツール・決定版

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

可視光光触媒でツルツルのベンゼン環をアミノ化する

単純なアルキルアミンが利用できる芳香族C–Hアミノ化反応が開発された。基質適用範囲が広く天然物などの…

【21卒】太陽ホールディングスインターンシップ

太陽HDでの研究職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場とし…

アラインをパズルのピースのように繋げる!

第198回のスポットライトリサーチは、広島大学工学研究科 博士課程前期2年の田中英也さんにお願いしま…

創薬・医療分野セミナー受講者募集(Blockbuster TOKYO研修プログラム第2回)

東京都主催の創薬・医療系ベンチャー育成支援プログラムである「Blockbuster TOKYO」では…

Chem-Station Twitter

PAGE TOP