[スポンサーリンク]

化学者のつぶやき

目指せ抗がん剤!光と転位でインドールの(逆)プレニル化

[スポンサーリンク]

可視光レドックス触媒を用いた、インドール誘導体のジアステレオ選択的な脱芳香族的C3位プレニル化および逆プレニル化反応が報告された。α-アミノアルキルラジカルのGiese付加と、続くIreland–Claisen転位により(逆)プレニル化インドリンを与える。

インドールの(逆)プレニル化反応

プレニル基および逆プレニル基を有するインドリンは、抗がん活性、抗菌活性、抗真菌活性をもつアルカロイドに頻繁にみられる構造であり、その有用性から合成法が広く研究されてきた[1]。中でも、直接的な(逆)プレニル基の導入法として、インドール誘導体の脱芳香族的C3位(逆)プレニル化反応は多数の報告がある。これら反応はほとんどが電子豊富なインドールを対象としており[2,3]、求核性の低い電子不足インドールのプレニル化反応の研究例はごく少数であった(図1A)[4]

近年、Gloriusらは可視光レドックス触媒を用いたアクリル酸エステルの1,2-ジアルキル化を報告した(図1B)[5]。不飽和エステルに対しボロン酸エステルやα-シリルアミンから生じたアルキルラジカルがGiese付加し、続くIreland–Claisen転位によりジアルキル化体を与える。

今回Feng、Liuらは、上述の手法を用いて3位にエステル基をもつ電子不足インドール誘導体の脱芳香族的(逆)プレニル化反応の開発に成功した(図1C)。本反応では高ジアステレオ選択的にトランス2,3-二置換インドリンが得られる。

図1. (A)脱芳香族的(逆)プレニル化 (B)アクリル酸エステルの1,2-ジアルキル化 (C)本研究

 

“Photoredox-catalyzed Diastereoselective Dearomative Prenylation and Reverse-prenylation of Electron-deficient Indole Derivatives”

Chang, X.; Zhang, F.; Zhu, S.; Yang, Z.; Feng, X.; Liu, Y. Nat. Commun. 2023, 14, 3876.

DOI: 10.1038/s41467-023-39633-9

論文著者の紹介

研究者:Xiaoming Feng (冯小明) (研究室HP)

研究者の経歴:

1985 B.Sc., Lanzhou University, China

1985–1988 M.Sc., Lanzhou University, China (Prof. Ziyi Zhang)
1988–1993 Assistant/associate professor, Southwest Normal University, China
1993–1996 Ph.D., Institute of Chemistry, Chinese Academy of Sciences, China
(Prof. Zhitang Huang and Yao-Zhong Jiang) 
1996–2000 Researcher, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences,                                                                      China
1998–1999 Postdoc, Colorado State University, USA (Prof. Yian Shi) 
2000–                           Professor, Sichuan University, China
2020–                           Senior researcher fellow, Shenzhen Bay Laboratory, China

研究内容:不斉有機触媒、有機金属触媒の開発と合成、生物活性物質の合成

 

研究者:Yangbin Liu (刘杨斌)

研究者の経歴:

–2016 Ph.D., Sichuan University, China (Prof. Xiaoming Feng) 
2016–2020 Postdoc, the State University of New York, USA (Prof. Zhang Wang) 
Postdoc, University of Geneva, Switzerland (Prof. Clément Mazet)
2020–                             Associate researcher fellow, Shenzhen Bay Laboratory, China (Prof. Xiaoming Feng) 

研究内容:不斉触媒を用いた天然生物活性物質の合成

論文の概要

DMF中4CzIPN存在下、インドール1とα-シリルアミン2に室温で青色光を照射した後、60 °Cに昇温することで、逆プレニル化インドリン3が得られる。本反応は様々なアリルエステルやα-シリルアミンが利用でき、逆プレニル基(3)やプレニル基(4)、γ-ラクタム(5)をもつインドリンを与える(図2A)。 

機構解明実験では、本反応系にTEMPO(additive 1)を添加した場合は3aが得られず、アリルフェニルスルホン(additive 2)を添加した場合に低収率ながら3aとアミン2a-allylが得られた(図2B)。これらの結果から、本反応系中におけるα-アミノアルキルラジカルの生成が示唆された。以上の結果と他の対照実験(論文参照)より推定される反応機構を次に示す(図2C)。まず、青色光により励起された4CzIPN*がα-シリルアミン2を一電子酸化し、α-アルキルラジカルIとTMS+が生じる。ラジカルIがインドール1のC2位に付加し中間体IIを与え、4CzIPN·–がIIを一電子還元して4CzIPNが再生するとともに、シリルケテンアセタールIIIが生成する。続いて、ジアステレオ選択的にIreland–Claisen転位が進行し、逆プレニル化インドリン3が得られる。

図2. (A)基質適用範囲 (B)反応機構解明 (C)推定反応機構

以上、可視光レドックス触媒を用いた、電子不足インドール誘導体の(逆)プレニル化反応が開発された。合成された化合物のいくつかにヒト白血病細胞に対する細胞毒性が認められたことから、今後、本反応を利用したより高活性な分子の創製が期待される(詳細は論文参照)。

参考文献

  1. (a) Wang, H.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. Mollenines A and B:  New Dioxomorpholines from the Ascostromata of Eupenicillium Molle. Nat. Prod. 1998, 61, 804–807. DOI: 10.1021/np9704056 (b) Li, S.-M. Prenylated Indole Derivatives from Fungi: Structure Diversity, Biological Activities, Biosynthesis and Chemoenzymatic Synthesis. Nat. Prod. Rep. 2010, 27, 57–78. DOI: 10.1039/b909987p (c) Lindel, T.; Marsch, N.; Adla, S. K. Indole Prenylation in Alkaloid Synthesis. Top. Curr. Chem. 2011, 67–129. DOI: 10.1007/128_2011_204
  2. (a) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. Pd-Catalyzed C3-Selective Allylation of Indoles with Allyl Alcohols Promoted by Triethylborane. J. Am. Chem. Soc. 2005, 127, 4592–4593. DOI: 10.1021/ja0501161 (b) Ruchti, J.; Carreira, E. M. Ir-Catalyzed Reverse Prenylation of 3-Substituted Indoles: Total Synthesis of (+)-Aszonalenin and (−)-Brevicompanine B. J. Am. Chem. Soc. 2014, 136, 16756–16759. DOI: 10.1021/ja509893s (c) Müller, J. M.; Stark, C. B. W. Diastereodivergent Reverse Prenylation of Indole and Tryptophan Derivatives: Total Synthesis of Amauromine, Novoamauromine, and Epi -Amauromine. Angew. Chem., Int. Ed. 2016, 55, 4798–4802. DOI: 10.1002/anie.201509468 (d) Tu, H.-F.; Zhang, X.; Zheng, C.; Zhu, M.; You, S.-L. Enantioselective Dearomative Prenylation of Indole Derivatives. Nat. Catal. 2018, 1, 601–608. DOI: 10.1038/s41929-018-0111-8 (e) Khopade, T. M.; Ajayan, K.; Joshi, S. S.; Lane, A. L.; Viswanathan, R. Bioinspired Brønsted Acid-Promoted Regioselective Tryptophan Isoprenylations. ACS Omega 2021, 6, 10840–10858. DOI: 10.1021/acsomega.1c00515
  3. (a) Roche, S. P.; Youte Tendoung, J.-J.; Tréguier, B. Advances in Dearomatization Strategies of Indoles. Tetrahedron 2015, 71, 3549–3591. DOI:1016/j.tet.2014.06.054 (b) Zheng, C.; You, S.-L. Catalytic Asymmetric Dearomatization (CADA) Reaction-Enabled Total Synthesis of Indole-Based Natural Products. Nat. Prod. Rep. 2019, 36, 1589–1605. DOI: 10.1039/c8np00098k
  4. Cerveri, A.; Bandini, M. Recent Advances in the Catalytic Functionalization of “Electrophilic” Indoles. Chin. J. Chem. 2020, 38, 287–294. DOI: 10.1002/cjoc.201900446
  5. Kleinmans, R.; Will, L. E.; Schwarz, J. L.; Glorius, F. Photoredox-Enabled 1,2-Dialkylation of α-Substituted Acrylates via Ireland–Claisen Rearrangement. Chem. Sci. 2021, 12, 2816–2822. DOI: 10.1039/d0sc06385a
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 高校生・学部生必見?!大学学術ランキング!!
  2. 官能評価領域におけるマテリアルズ・インフォマティクスの活用とは?…
  3. ここまで来たか、科学技術
  4. MEDCHEM NEWS 32-1号「機械学習とロボティックス特…
  5. ポンコツ博士の海外奮闘録XIX ~博士,日本を堪能する①~
  6. 量子の力で生体分析!?シングレット・フィッションを用いたNMR感…
  7. アルカリ土類金属触媒の最前線
  8. 産学それぞれの立場におけるマテリアルズ・インフォマティクス技術活…

注目情報

ピックアップ記事

  1. 第130回―「無機薄膜成長法を指向した有機金属化学」Lisa McElwee-White教授
  2. 化学者のためのエレクトロニクス講座~代表的な半導体素子編
  3. 角田 佳充 Yoshimitsu Kakuta
  4. ベンゼン環をつないで 8 員環をつくる! 【夢の三次元ナノカーボンの創製に向けて】
  5. トリス(2,4-ペンタンジオナト)鉄(III):Tris(2,4-pentanedionato)iron(III)
  6. フルエッギン Flueggine
  7. 第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授
  8. ローゼンムント還元 Rosenmund Reduction
  9. 学生実験・いまむかし
  10. UV-Visスペクトルの楽しみ方

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP