[スポンサーリンク]

chemglossary

メカニカルスターラー

[スポンサーリンク]

容器内の液体や固体を撹拌するための実験器具であり、撹拌機と実験器具のカタログでは紹介されている。ここでは、同じく撹拌させるための道具であるマグネチックスターラーと特徴を比較する。

メカニカルスターラーの構造

メカニカルスターラーは主に、モーターと撹拌棒という二つの部品で構成されている。モーターは、撹拌棒を回転させる役割を持つ。モーターの性能は、回転数と最大トルクに示され、激しく回転させる必要がある場合には、回転数が高いものを選択する必要があり、一方粘度が高いか、固体を多く混ぜる場合には最大トルクが高いモーターを選択する必要がある。これは、ミニ四駆などのミニカーと同じことで、速いモーターでもトルクがないと坂道を登れないのと同じことである。また多くの撹拌機がオーバーロード(過負荷)などを検知して自動的に運転をストップしモーターを守る保護装置が付加されている。

モーターと撹拌棒(アズワンAXELより引用)

撹拌棒は、回転して混ぜる部分であり、様々な形の羽が売られている。ビーカーで撹拌する場合には形の制限はないが、ナスフラスコで効率よく撹拌する場合には、すりを通過することができ、底面の形に合っている必要がある。材質は、SUS、ガラス、PTFEなどがあり、スターラーバー同様使用する系に合わせて使う。

様々な形の羽(アズワンAXELより引用)

すりから入れる際には、羽が縦になり(右の羽の写真)通過でき、回す際には開いて羽が回る(左の羽の写真)(アズワンAXELより引用)

開放系で使用する場合は問題ないが、窒素下や減圧で撹拌する場合には、撹拌棒をシールする必要がある。その場合には、撹拌シールという部品を使ってシールを行う。

適合するサイズの撹拌棒を刺して使う(アズワンAXELより引用)

さらに密閉性を気にする場合にはマグネット真空撹拌装置というものを使う。これは、撹拌機とパーツ上部のマグネットを棒で接続しマグネットを回転させる(フラスコ外)。そしてマグネットの磁気が内部の回転軸とそれにつながった撹拌棒を回転させる(フラスコ中)。このような機構のため系の内外を貫通している動くパーツはないので密閉性が高い中で撹拌できる。

上部の金属パーツがマグネット、下部には、撹拌棒のシャフトを接続固定できる。(アズワンAXELより引用)

特徴

筆者は学生時代、このメカニカルスターラーを使ったことがなく、これを使って実験をすることに無駄に憧れていた。しかし、いざ使ってみると便利なこと以外にも使う上で気を付けなくてはならない面を知った。ここでは、実体験をもとにマグネチックスターラーと比較する。

長所

  1. 撹拌子を入れる必要がない
  2. 回転が安定している
  3. 液体の粘性が高くても撹拌できる

1は当たり前のことだが、スケールが大きくなってくる(5L以上のフラスコを使った実験)と撹拌子一つとっても取り扱いにリスクが出てくる。例えば、撹拌子を入れる際に重力の勢いがついてフラスコを割ってしまったことがある。また、冷却・加熱用のバスをフラスコとスターラーの間に挟むと磁力が弱くなって回転しなくなってしまう。このようなことはメカニカルスターラーでは起こらない。2に関して、撹拌子で撹拌を始めたが、ちょっと目を離したら回っていなかった経験を誰でもあるだろう。メカニカルスターラーの場合は回転が安定している上、色が濃い液体を低速で撹拌していても撹拌の確認が容易である。3に関して固体と少量の溶媒を入れて徐々に液体を加える実験などでは、初期に撹拌子が回転しない場合がある。その点も十分なトルクがあるメカニカルスターラーはしっかりと撹拌できて便利である。

短所

  1. モーターが重い
  2. 羽の取り扱いに注意が必要
  3. 羽の位置決めが重要

上記の写真のモーターの重さは2.8 Kgあり、しっかりと頑丈なジャングルに固定しないとジャングルともども倒壊してしまう。また、羽によっては構造が複雑で、反応物の回収率が悪くなる。また、きれいに洗う手間がかかる。3に関して羽の位置を固定する際に、フラスコの底面かつ側面に接触しないで固定する必要がある。

羽の無い撹拌機

遠心力が水流を生み出して撹拌する撹拌棒もあり、より効率よく泡立ちも少なく撹拌できる。

上記のようにモーターが重く小さなフラスコに対しては使いにくかったが、小型の撹拌機も開発されていて、その場合には湾曲したPTFEの棒が回転することで撹拌される。

関連書籍

関連リンク

 

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 卓上NMR
  2. 銀イオンクロマトグラフィー
  3. 国連番号(UN番号)
  4. 高速液体クロマトグラフィ / high performance …
  5. 原子分光分析法の基礎知識~誘導結合プラズマ発光分析法(ICP-O…
  6. 水分解 water-splitting
  7. 酵母還元 Reduction with Yeast
  8. 合成後期多様化法 Late-Stage Diversificat…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アステラス製薬、抗うつ剤の社会不安障害での効能・効果取得
  2. 第一手はこれだ!:古典的反応から最新反応まで3 |第8回「有機合成実験テクニック」(リケラボコラボレーション)
  3. 第六回ケムステVシンポ「高機能性金属錯体が拓く触媒科学」
  4. 熱すると縮む物質を発見 京大化学研
  5. 分子があつまる力を利用したオリゴマーのプログラム合成法
  6. 環状アミンを切ってフッ素をいれる
  7. 金沢ふるさと偉人館
  8. MOF-74: ベンゼンが金属鎖を繋いで作るハニカム構造
  9. バナジル(アセチルアセトナト) Vanadyl(IV) acetylacetonate
  10. 高分子を”見る” その1

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年2月
 1234
567891011
12131415161718
19202122232425
262728  

注目情報

注目情報

最新記事

Ni(0)/SPoxIm錯体を利用した室温におけるCOの可逆的化学吸着反応

第395回のスポットライトリサーチは、大阪大学大学院 工学研究科 (生越研究室)・山内泰宏さんにお願…

第27回ケムステVシンポ『有機光反応の化学』を開催します!

7月に入り、いよいよ日差しが強まって夏本格化という時期になりました。光のエネルギーを肌で感じられます…

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP