[スポンサーリンク]

chemglossary

メカニカルスターラー

[スポンサーリンク]

容器内の液体や固体を撹拌するための実験器具であり、撹拌機と実験器具のカタログでは紹介されている。ここでは、同じく撹拌させるための道具であるマグネチックスターラーと特徴を比較する。

メカニカルスターラーの構造

メカニカルスターラーは主に、モーターと撹拌棒という二つの部品で構成されている。モーターは、撹拌棒を回転させる役割を持つ。モーターの性能は、回転数と最大トルクに示され、激しく回転させる必要がある場合には、回転数が高いものを選択する必要があり、一方粘度が高いか、固体を多く混ぜる場合には最大トルクが高いモーターを選択する必要がある。これは、ミニ四駆などのミニカーと同じことで、速いモーターでもトルクがないと坂道を登れないのと同じことである。また多くの撹拌機がオーバーロード(過負荷)などを検知して自動的に運転をストップしモーターを守る保護装置が付加されている。

モーターと撹拌棒(アズワンAXELより引用)

撹拌棒は、回転して混ぜる部分であり、様々な形の羽が売られている。ビーカーで撹拌する場合には形の制限はないが、ナスフラスコで効率よく撹拌する場合には、すりを通過することができ、底面の形に合っている必要がある。材質は、SUS、ガラス、PTFEなどがあり、スターラーバー同様使用する系に合わせて使う。

様々な形の羽(アズワンAXELより引用)

すりから入れる際には、羽が縦になり(右の羽の写真)通過でき、回す際には開いて羽が回る(左の羽の写真)(アズワンAXELより引用)

開放系で使用する場合は問題ないが、窒素下や減圧で撹拌する場合には、撹拌棒をシールする必要がある。その場合には、撹拌シールという部品を使ってシールを行う。

適合するサイズの撹拌棒を刺して使う(アズワンAXELより引用)

さらに密閉性を気にする場合にはマグネット真空撹拌装置というものを使う。これは、撹拌機とパーツ上部のマグネットを棒で接続しマグネットを回転させる(フラスコ外)。そしてマグネットの磁気が内部の回転軸とそれにつながった撹拌棒を回転させる(フラスコ中)。このような機構のため系の内外を貫通している動くパーツはないので密閉性が高い中で撹拌できる。

上部の金属パーツがマグネット、下部には、撹拌棒のシャフトを接続固定できる。(アズワンAXELより引用)

特徴

筆者は学生時代、このメカニカルスターラーを使ったことがなく、これを使って実験をすることに無駄に憧れていた。しかし、いざ使ってみると便利なこと以外にも使う上で気を付けなくてはならない面を知った。ここでは、実体験をもとにマグネチックスターラーと比較する。

長所

  1. 撹拌子を入れる必要がない
  2. 回転が安定している
  3. 液体の粘性が高くても撹拌できる

1は当たり前のことだが、スケールが大きくなってくる(5L以上のフラスコを使った実験)と撹拌子一つとっても取り扱いにリスクが出てくる。例えば、撹拌子を入れる際に重力の勢いがついてフラスコを割ってしまったことがある。また、冷却・加熱用のバスをフラスコとスターラーの間に挟むと磁力が弱くなって回転しなくなってしまう。このようなことはメカニカルスターラーでは起こらない。2に関して、撹拌子で撹拌を始めたが、ちょっと目を離したら回っていなかった経験を誰でもあるだろう。メカニカルスターラーの場合は回転が安定している上、色が濃い液体を低速で撹拌していても撹拌の確認が容易である。3に関して固体と少量の溶媒を入れて徐々に液体を加える実験などでは、初期に撹拌子が回転しない場合がある。その点も十分なトルクがあるメカニカルスターラーはしっかりと撹拌できて便利である。

短所

  1. モーターが重い
  2. 羽の取り扱いに注意が必要
  3. 羽の位置決めが重要

上記の写真のモーターの重さは2.8 Kgあり、しっかりと頑丈なジャングルに固定しないとジャングルともども倒壊してしまう。また、羽によっては構造が複雑で、反応物の回収率が悪くなる。また、きれいに洗う手間がかかる。3に関して羽の位置を固定する際に、フラスコの底面かつ側面に接触しないで固定する必要がある。

羽の無い撹拌機

遠心力が水流を生み出して撹拌する撹拌棒もあり、より効率よく泡立ちも少なく撹拌できる。

上記のようにモーターが重く小さなフラスコに対しては使いにくかったが、小型の撹拌機も開発されていて、その場合には湾曲したPTFEの棒が回転することで撹拌される。

関連書籍

関連リンク

 

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. クロスカップリング反応 cross coupling react…
  2. シュテルン-フォルマー式 Stern-Volmer equat…
  3. 界面活性剤 / surface-active agent, su…
  4. 研究のための取引用語
  5. ラマン分光の基礎知識
  6. 機能指向型合成 Function-Oriented Synthe…
  7. ポリメラーゼ連鎖反応 polymerase chain reac…
  8. キャピラリー電気泳動の基礎知識

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 寺崎 治 Osamu Terasaki
  2. Dead Endを回避せよ!「全合成・極限からの一手」②(解答編)
  3. 上村 大輔 Daisuke Uemura
  4. スーパーブレンステッド酸
  5. 日本化学会 第11回化学遺産認定、新たに4件を発表
  6. 天然物生合成経路および酵素反応機構の解析 –有機合成から生化学への挑戦–
  7. 第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授
  8. 日本入国プロトコル(2022年6月末現在)
  9. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  10. 第37回 糖・タンパク質の化学から生物学まで―Ben Davis教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年2月
 1234
567891011
12131415161718
19202122232425
262728  

注目情報

注目情報

最新記事

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP