[スポンサーリンク]

一般的な話題

ヒュッケル法(後編)~Excelでフラーレンの電子構造を予測してみた!~

[スポンサーリンク]

bergです。今回は量子化学の黎明期に有機化学の分子軌道論との橋渡しとしての役割を果たしたヒュッケル法(Hückel法)の2回目です。前回はシュレディンガー方程式からヒュッケル法の概要、エチレン、ブタジエン、ベンゼンなどの簡単な分子での計算を追っていき、芳香族性の判定法(ヒュッケル法、フロスト円)までたどり着きましたね。ただし、ヒュッケル法ではn個のπ電子を有する共役系について知見を得るにはn次の行列式(永年方程式)を解く必要があり、複雑な分子では手計算で求めるのが困難でした。そこで、2回目の今回はMicrosoft Excel®のソルバー機能を用いて簡単に解を求める方法をご紹介してまいります。

前回のおさらい

・量子力学の基盤となるシュレディンガー方程式は、厳密には解けない(水素原子除く)。

・ヒュッケル法はπ共役系分子について、分子軌道近似π電子近似LCAO近似を施すことで単純化して解く方法。

・シュレディンガー方程式の左側からΨ*をかけて積分したものをエネルギー固有値Eについて解き、これが最安定となる係数を求める。

・上記はEの各係数での偏微分が0となることを意味し、これをまとめると永年方程式(行列式)が0となる条件を求めることと同値。

・永年方程式の解から各準位のエネルギー固有値と分子軌道のかたちが分かる。

・ポリエン・環状共役系ではエチレンより安定化するケース→共鳴エネルギー(非局在化エネルギー)、芳香族性

・逆にシクロブタジエンでは不安定化→反芳香族性

・芳香族性(4n+2)/反芳香族性(4n)の判定はヒュッケル則に従う。

・ねじれた環では安定性が逆転する(メビウス芳香族性

ざっとこんなところでしょうか。それではいよいよ今回の内容に進んでいきましょう。

ナフタレンの反応性を考察してみた!

まず手始めに、ナフタレン(C10H8)を例にMicrosoft Excel®のソルバー機能を用いて簡単に解を求める方法をご紹介します。

ナフタレン(画像:Wikipedia

スルホン化が代表例ですが、ナフタレンへの芳香族求電子置換(SEAr)反応が一般的に低温ではα位に、高温ではβ位に起こりやすいことは高校化学でもよく題材に取り上げられ、学部生向けの教科書にはそれぞれ速度論支配熱力学支配であることが説明されています。混み合っていないβ置換体が熱力学的に安定なのはともかくとして、それではなぜα位の方が早く反応が進行するのでしょうか?これは従来の有機電子論では説明がつかず、実はフロンティア軌道論の揺籃の地として決定的な役割を果たした難問でもあります[1]。

——————————————————-

以下の計算環境は

ソフトウェア:Microsoft Excel 2019 64bit版

CPU:Intel Core i9-9980HK 2.40GHz

仕様可能メモリ:25.6GB

で実行しています。

——————————————————-

Excelのソルバー機能とは、関数の値が指定値となるような変数の値を探索する機能です。今回の場合、行列式(関数)の値が0となるようなx(変数)を全て求めることになります。

まずは行列を作成します。変数x以外の定数項は手動で入力、xの項はQ5セルから呼び出しています。永年方程式の解(行列式)はMDETERM関数で求めています。

ここまで来たらあとはソルバーを回すだけです。「データ」タブの右側、「分析」のカテゴリのソルバーアイコンを選択し、目的セル(行列式の値)を指定値(0)にするために変数(x)を変化させます。x>3の領域には解がなさそうなので念のため確認してみます。

案の定解なしでした。これでx<3の範囲で探索すればよいことになります。

(解があると予想される領域で見つからない場合にはオプションから「制約条件の制度」を緩めます)

見つかりました。最大の解はx=2.303くらいでした。回答をレポートとして別タブに出力しておくと後々便利です。

このように計算にかかった時間までご丁寧に出力されます。

解が得られるたびに制約条件を変えて次の解を探索していくと、ナフタレンについては、

と定まります。どれも0.1秒足らずで計算できました。10個のエネルギー固有値が重複なく得られたので、軌道の縮退がないことが示されました。

案外重解が一つもなかったので、HOMOのエネルギーがα+0.618β、LUMOがα-0.618βとわかります。

さて、問題はHOMO(x=-0.618)のローブの形です。得られたxの値を永年方程式の導出過程に現れる行列のα-Eに代入し、行列と係数ベクトルの積(MMULT関数で計算可能です)が0となり、2乗和が1となるような10個の係数群を求めます。条件を増やさないと一意には定まらないため対称性に着目して同様にソルバーで解くと、

α位の係数が0.4253、β位が0.2629となります。ゆえにHOMOの電子密度は、

となり、α位がβ位の2.7倍近いという結果が得られ、実験結果の説明がつきました。福井謙一教授らはこのHOMO(フロンティア軌道)の電子密度の差異に着目し、これが求電子試薬との反応性を規定していると考えてフロンティア軌道論を提唱しました。このような計算で分子の反応性を予測できるというのは非常に興味深いですね。

フラーレンの永年方程式を解いてみた!

このたび、π共役系分子の金字塔ともいえるフラーレン(C60過去記事)についても永年方程式が解けるのか試してみました!

フラーレン(画像:Wikipedia

永年方程式は60次になりますが、画像の連番を参考にひたすら作成していきます。

構造式とにらみ合って打ち込ましたが、かなりしんどいです(笑)これでもほとんどの項は0です。なんだか模様に規則性がありそうですね。

ソルバーでしらみつぶしに解を求めていくと

13の解が見つかりました。一部の解は20秒近く計算にかかりました(笑)

答え合わせをすると、フラーレンのエネルギー準位は15個ある[2]ようなのですが、いろいろと条件を変えて試行してもどうしても2つの軌道を発見できませんでした。60次関数では勾配が極めて急峻になるため、見逃しが発生しやすくなるのかもしれません。また、π平面の歪みによって縮退が解ける可能性も考えられそうです。随分苦行した割には寂しい結果となりましたが、特別なソフトを使わずにここまでの結果が得られるとわかったことは大きな収穫でした。学生時代以来ひさびさに量子化学に触れて、良い頭の体操になったと思います。

フラーレンはその高度に対照的な構造のため、高次に縮退した電子構造を持ちます。とりわけLUMOが三重縮退していることから電子受容能に優れ、最大6電子還元まで受けることが知られています。

このような特性を活かした[2+3]双極子付加反応をはじめとする化学修飾が容易であり、有機半導体などの機能性材料をはじめとする応用が嘱望されています。

・・・

ここまでご覧のように、ヒュッケル法は大胆な近似を用いた極めてシンプルな計算手法でありながら、それなりに化合物の物性を説明できる結論を導ける優れた手法です。とはいえ、手計算やExcelでの求解には限界もあります。現在はGAMESSGaussianなどの優れた計算科学ソフトウェアがあり、ハートリー=フォック法(HF法)密度汎関数法などのヒュッケル法よりはるかに高度な計算(非経験的分子軌道法)を誰でも手軽に行うことがでるようになりました。特にGAMESSは無償版も提供されており、非常にありがたい時代になったといえますね。

関連書籍

参考文献

[1] 稲垣 都士, 池田 博隆, 化学と教育, 2019, 67(1), p.28-31,

https://doi.org/10.20665/kakyoshi.67.1_28

…フロンティア軌道論についての総説

[2] M. S. Golden et al, Journal of Physics: Condensed Matter, 1995, 7,8219-8247.

https://doi.org/10.1088/0953-8984%2F7%2F43%2F004

…フラーレンの電子構造について

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 思わぬ伏兵・豚インフルエンザ
  2. 太陽ホールディングスってどんな会社?
  3. Retraction watch リトラクション・ウオッチ
  4. 光刺激に応答して形状を変化させる高分子の合成
  5. インドールの触媒的不斉ヒドロホウ素化反応の開発
  6. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ②
  7. 穴の空いた液体
  8. 化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができる…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ポットエコノミー Pot Economy
  2. ヒドロメタル化 Hydrometalation
  3. 藤沢晃治 「分かりやすい○○」の技術 シリーズ
  4. 磁石でくっつく新しい分子模型が出資募集中
  5. 2016年9月の注目化学書籍
  6. 【追悼企画】鋭才有機合成化学者ーProf. David Gin
  7. テッベ試薬 Tebbe Reagent
  8. 捏造のロジック 文部科学省研究公正局・二神冴希
  9. バイオタージ Isolera: フラッシュ自動精製装置がSPEED UP!
  10. 材料費格安、光触媒型の太陽電池 富大教授が開発、シリコン型から脱却

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

「ソーシャルメディアを活用したスタートアップの価値向上」 BlockbusterTOKYO 2020 第9回 研修プログラムを実施!

Blockbuster TOKYOは東京都が主催し、Beyond Next Ventures株式会社…

カルボカチオンの華麗なリレー:ブラシラン類の新たな生合成経路

反応経路の自動探索によりセスキテルペンのトリコブラシレノールの新たな全生合成経路が提唱された。ト…

特許の効力と侵害

bergです。今回は知的財産権の代表格である特許権について、その効力と侵害された/侵害してしまったと…

光レドックス触媒反応 フォトリアクター Penn PhD Photoreactor M2をデモしてみた

いまや有機反応の開発に欠かせなくなった可視光反応場。多くの化学論文誌で毎週必ずいくつかみるほどですね…

Chem-Station Twitter

PAGE TOP