[スポンサーリンク]

スポットライトリサーチ

青色LED励起を用いた赤色強発光体の開発 ~ナノカーボンの活用~

[スポンサーリンク]

第250回のスポットライトリサーチは、北海道大学 長谷川研究室 特任講師の北川裕一(きたがわ ゆういち)先生にお願いしました。

長谷川研究室は、希土類(レアアース)発光体を用いた材料を軸に、感温発光材料や円偏光発光体など新しい機能性発光材料を次々と生み出している注目の研究室です。

今回紹介いただける内容は、もともと光りにくいレアアース発光体であるユウロピウムを、アイデアあふれる戦略的な錯体合成で劇的に発光輝度を向上させたという成果です。特に、産業的な応用の観点から需要が高い、青色LEDで発光可能な材料を報告した点が画期的で素晴らしい成果です。本成果は、Communications Chemistry誌に原著論文として公開されプレスリリースもされており、多数のメディアに取り上げられています。

“Stacked nanocarbon photosensitizer for efficient blue light excited Eu(III) emission”
Yuichi Kitagawa, Fumiya Suzue, Takayuki Nakanishi, Koji Fushimi, Tomohiro Seki, Hajime Ito & Yasuchika Hasegawa,
Communications Chemistry, 2019DOI: 10.1038/s42004-019-0251-z 

長谷川靖哉先生からは、北川先生及び今回の成果について以下のようなコメントをいただきました。

北川裕一さんは芳香族分子の量子光化学に強く、分子合成もできる新進気鋭の若手科学者です。今回はコロネンという芳香族系ナノカーボン構造をユウロピウムに初めて取り付け、これまで不可能であった青色LED励起でのユウロピウムの赤色発光を実現させることに成功しました。これは芳香族分子と希土類イオンの励起状態を制御する新概念を導入した初めての研究となります。本研究成果は光産業的に極めて重要であり、ディスプレイや照明など様々な応用展開が期待されます。このように、北川さんの新しい分子設計指針は希土類錯体の光化学を大きく切り開くだけでなく、産業展開も意識した素晴らしい研究スタイルであると思います。これからも新しい分子設計に基づく光機能分子を創出し、学術と産業の両面に大きく貢献していくことを期待しています。

それでは、北川先生からの情熱あふれるメッセージをご覧ください! 新材料開発のアイデアを支えているのは、北川先生の研究・教育に対する熱い思いだということが伝わってきます!

Q1. 今回のプレスリリース対象となったのはどのような研究ですか?

青色LED励起により赤色強発光を示す新型レアアース分子」を開発しました(図1左)。

LEDと蛍光素子を組み合わせた材料は、ディスプレイ、照明など現代社会においては必要不可欠となっています。身近に使用されている発光体は無機蛍光体が主流でしたが、近年では分子性発光体も注目されています。その中でも、私たちは有機分子とレアアースから構成される有機・無機ハイブリッド材料「レアアース分子」の開発を行っています。この分子は他のどの発光体よりも純粋な一つの色を発する(図1右、他の発光体だと混合色を発する)ため発光材料としての大きな利点を有しております。我々は産業応用を視野に入れ、高輝度および高耐久性を示すレアアース分子の開発を行ってきました。しかし、可視発光性レアアース分子を強く光らせるためには、紫外線での励起(光照射)が必要であり、応用用途が限られていました。本研究ではナノカーボンを導入した赤色発光型レアアース分子を開発し、これまでの青色光励起における発光輝度の値(世界最高値)を5倍以上更新しました。また高い耐久性も同時に達成できているため(熱分解温度 > 300℃、産業的な重要性も高く、国際特許出願(米国、中国、欧州)も行いました。

gif1

図1.(左)開発した赤色発光レアアース分子の概略図。(右)レアアース分子と蛍光色素の発光スペクトルの比較。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

「産業的に需要がある研究課題」は世界中で広く行われております。低エネルギーの可視光でレアアース分子を強く光らす研究も例外ではありません。そのため本課題のブレークスルーを実現するためには「根本的に新しい考え方」を光増感分子のデザインに取り入れる必要がありました。

低エネルギー光を利用するための光増感分子は様々な分野(発光体、太陽電池、人工光合成)で研究されております。その中でもエネルギーが低い禁制遷移を利用できる「重い遷移金属を含む錯体」が注目を集めてきました。それに対して、私は「励起寿命が長い有機化合物」の導入が低エネルギー光の効率的な利用につながるという考えを打ち立てました。ただすぐに思いついたのではなく、レアアース分子の研究をはじめてから、この考えに至るまで四年かかりました。思考の積み重ねが研究をする上で重要と改めて実感しました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

私は2014年度に北海道大学に教員として赴任して以降、学生さんにテーマを与えて二人三脚で研究を行ってきております。そのため研究の壁にぶつかったときにそれを乗り越えるためには、❶学生と教員の信頼関係、❷学生の研究に対する高いモチベーション、が重要です。私は学生さんの教育として研究テーマの本質を深く理解してもらうための「勉強会」を大事にしてきました。

当研究室において今回報告したレアアース分子の合成難易度は高いものでしたが、学生さんがこの分子を作れば良い光物性が出ると信じてくれて、粘って実験をしてくれました。学生さんが自発的に頑張ってくれていなかったら本成果は達成できなかったと思っております。

Q4. 将来は化学とどう関わっていきたいですか?

「最先端の研究」を行い、それを介して「学生教育」を行っていきたいです。

今日に至るまで膨大な物質(有機化合物・無機化合物)とその特性が報告されており、既報と「根本的に異なるサイエンス」を発見することは一筋縄ではいきません。そのため徹底的に考え抜いた「研究テーマ」が大事だと思います。大学の研究室生活は学生さんにとってかけがえのない時間です。「最先端の研究」と胸を張って言えるテーマを学生さんに出せれるように努力していきたいです。また学生さんにその研究を介して「物事をトコトン掘り下げて考える」ことの大切さを伝えることができたらいいなぁと思っております。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究は「考え続けることが大切」だと思います。

研究を行っているとき分からない現象に直面することは多々あります。また既報の文献ですら読んでいて理解できないこともあります。ここで大事なのは一時間考えて分からなかったら十時間考える。それでも分からなかったら百時間考えるという、「解答を出すまで考え続けるスタイル」だと思っております。

私は学生時代、“ヘビーな理論系の研究課題”に挑戦する機会がありました。その課題をクリアするために無数の大きな壁を乗り越える必要があり、その中の問題一つを解決することですら数十時間かかりました。それまで私は数時間考えて分からない問題に対する理解を諦めてきましたが、この挑戦を通じて難しい問題も考え続ければ答えを出せることを初めて知りました。それ以降、分からないことを粘り強く考える癖ができました。解答にたどり着く成功体験が増えるとともに自信がつき、「答えが出せない段階でも楽しい」と感じることが増え、「現状で手も足もでない課題」に飛び込む勇気もついてきました。このような経験から、もし研究で理解できないことに直面したら私は粘って、粘って考えてみることをお勧めしています。

最後になりましたが、本研究を遂行するにあたりご指導を頂いた長谷川靖哉教授、伊藤肇教授、伏見公志准教授、中西貴之主任研究員、関朋宏助教、私と二人三脚で研究を粘り強く頑張ってくれた鈴江郁哉氏、学生時代に研究者としての基礎的な力を鍛えてくださった石井和之教授、そしてこのような機会を与えてくださったケムステスタッフの方々に深く感謝申し上げます。

関連リンク

  1. 北海道大学 長谷川研究室
  2. プレスリリース:従来の5倍以上光る発光体を開発~より美しく繊細に光る,青色LED励起を用いた新型レアアース分子~
  3. プレスリリース:Let the europium shine brighter
  4. 財経新聞:従来比5倍で赤色発光するレアアース分子を開発
  5. Optronics:北大,青色LED励起の赤色発光材料を開発
  6. eeNews:Researchers develop ultra-bright molecule
  7. LED professional:Researchers from Hokkaido University Let Europium Shine Brighter
  8. Photonics Media:Photosensitizer Design Absorbs Low-Energy Light, Transfers Energy Efficiently
  9. Science Diary:Nanocarbon antenna makes a rare earth element shine 5 times more brightly
  10. AzoNano:Stacked Nanocarbon Antenna Makes Europium Shine Five Times Brighter

研究者の略歴

Kitagawa (2)北川 裕一(きたがわ ゆういち)

所属:北海道大学 化学反応創成研究拠点

専門: 光化学

略歴:
2013年3月 東京大学 大学院工学系研究科応用化学専攻 博士課程修了
2013年4月 日本学術振興会特別研究員(PD)
2014年5月 北海道大学工学研究院 特任助教
2019年4月 北海道大学化学反応創成研究拠点&工学研究院 特任講師

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JK。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 分子機械を組み合わせてアメーバ型分子ロボットを作製
  2. 細孔内単分子ポリシラン鎖の特性解明
  3. 硫黄配位子に安定化されたカルボンの合成
  4. π電子系イオンペアの精密合成と集合体の機能開拓
  5. 逐次的ラジカル重合によるモノマー配列制御法
  6. 副反応を起こしやすいアミノ酸を迅速かつクリーンに連結する
  7. 非平衡な外部刺激応答材料を「自律化」する
  8. 世界初の有機蓄光

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「サリドマイド」投与医師の3割が指針”違反”
  2. ヤモリの足のはなし ~吸盤ではない~
  3. ポリエチレンなど合成樹脂、値上げ浸透
  4. 第114回―「水生システムにおける化学反応と環境化学」Kristopher McNeill教授
  5. リガンドによりCO2を選択的に導入する
  6. 四角い断面を持つナノチューブ合成に成功
  7. 光触媒を用いたC末端選択的な脱炭酸型bioconjugation
  8. 研究室で役立つ有機実験のナビゲーター―実験ノートのとり方からクロマトグラフィーまで
  9. 有望ヘリウム田を発見!? ヘリウム不足解消への希望
  10. アスタキサンチン (astaxanthin)

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

第133回の海外化学者インタビューはジェイソン・チン教授です。ケンブリッジMRC分子生物学研究所のタ…

アメリカ大学院留学:卒業後の進路とインダストリー就活(3)

前回・前々回の記事では、アメリカのPhD取得後の進路について、一般的な進路やインダストリー就活の流れ…

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された。本手法…

化学者のためのエレクトロニクス講座~次世代の通信技術編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

アメリカ大学院留学:卒業後の進路とインダストリー就活(2)

前回の記事では、アメリカのPhD取得後の進路について、一般的な進路や就活を始める時期について紹介しま…

Chem-Station Twitter

PAGE TOP