[スポンサーリンク]

スポットライトリサーチ

分子間相互作用の協同効果を利用した低対称分子集合体の創出

[スポンサーリンク]

第470回のスポットライトリサーチは、長崎大学 大学院工学研究科 物質科学部門 錯体化学研究室に所属されていて、現在は東京大学 大学院総合文化研究科 広域科学専攻 相関基礎科学系 平岡研究室に在籍されている堀内 新之介(ほりうち しんのすけ)講師にお願いしました。

堀内先生は約6年前にスポットライトリサーチに出演されており、今回は2回目の登場です。本プレスリリースの研究内容は、分子自己集合についてです。分子自己集合は分子が集まって巨大な集合構造が構築される現象のことで、近年では新しい材料を作り出す手法にこの分子自己集合を取り入れる試みが盛んです。しかし従来の分子自己集合では、得られる化合物の構造は対称性の高い構造という常識があり、低対称構造体を自己集合によって合成することは困難とされてきました。そこで本研究グループは、有機分子と遷移金属錯体を混ぜるだけで、分子対称性が最も低いC1対称の分子集合体が形成することを発見しました。

この研究成果は、「Nature Communications」誌に掲載され、長崎大学のホームページにも成果の概要が公開されています。

Symmetry-Breaking Host–guest Assembly in a Hydrogen-bonded Supramolecular System

Shinnosuke Horiuchi,* Takumi Yamaguchi, Jacopo Tessarolo, Hirotaka Tanaka, Eri Sakuda, Yasuhiro Arikawa, Eric Meggers, Guido H. Clever,* Keisuke Umakoshi*

Nat Commun 14, 155 (2023)

DOI: doi.org/10.1038/s41467-023-35850-4

錯体化学研究室を主宰されている馬越啓介 教授より堀内講師についてコメントを頂戴いたしました!

超分子カプセルに金属錯体を閉じ込めて発光特性を向上させる研究は,堀内君が長崎大学に着任して立ち上げたテーマで,最初の論文が公開された折に一度スポットライトリサーチで取り上げていただきました。当時から,ビピリジン部位に置換基を導入したIr錯体を包接させる実験も行っていましたが,長崎大学が採択された「頭脳循環を加速する戦略的国際研究ネットワーク推進プログラム」を通して堀内君がドイツ・ドルトムント工科大学(Clever教授)に留学し,またマールブルク大学・Meggers教授との共同研究に着手したことが,光学分割したIr錯体を超分子カプセルに包接させる新たな展開に繋がりました。この研究で,バルキーな置換基を持つ錯体を包接させると超分子の対称性が崩れることを発見したわけですが,様々な測定結果を矛盾なく説明するストーリーを作る作業に参加して,私もとても勉強になりました。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

超分子化学の発展により、自己集合で巨大分子が合成できることはもはや当たり前となってきました。近年では、さらなる高度な分子システムを開発する糸口を見つけるため、得られる分子集合体の複雑性や構造情報量を高める取り組みが盛んに行われています。しかし自己集合の原理から、生成物は高い対称性を持つ高配置エントロピー構造が得られやすいため、複雑性や構造情報量の高い低対称構造を有する分子集合体を選択的に得ることは依然として困難な課題です。

本研究では、自己集合の駆動力に生体分子の自己集合で見られる水素結合や分子間相互作用の協同効果を用いることでC4vおよびC2対称の構成成分からC1対称の分子集合体が形成されることを発見しました。さらに自己集合に基づく分子低対称化に由来する光機能変化も確認しました。C2対称のキラルなIr錯体の円偏光発光特性を調べたところ、自己集合によって分子の対称性がC1に低下することで、円偏光発光の異方性因子glumが向上しました(図1)。これは分子対称性が変化したことで、発光に関与する励起三重項状態における電子遷移双極子モーメントと磁気遷移双極子モーメントが変化したためと理解できます。

図1

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

前回のスポットライトリサーチをご覧いただくと、本研究の分子設計はその延長線上から生まれたことが推測できるかと思います。そのため本研究では、得られた結果をただの続報論文とするのではなく、新規性を明確にさせるようなストーリー作りを工夫しました。自分たちの研究グループだけではこのストーリーに沿うような実験結果を集めることは困難でしたが、国内外様々な分野の先生方にご支援いただき、まとめきることが出来ました。関わった先生方の持ち味が存分に活かされた、良い研究成果を発表できたと思います。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究成果の最初のデータは、前回スポットライトリサーチに取り上げていただいた研究成果を発表してすぐの段階(6年前)で得られていました。しかし、それだけでは決め手に欠ける内容であったため、なかなか外部に発表できない状況が続きました。その後、この研究とは異なるテーマで多くの研究グループと共同研究をする機会があり、それらがきっかけで今回の論文のストーリー作りにつながりました。

次にぶつかった壁は化合物の構造解析でした。構造解析の三種の神器といえばNMR、質量分析、結晶構造解析ですが、この研究で扱った分子集合体の場合、観測される分子集合構造が測定手法ごとに異なる結果になりました。本研究の合成ストラテジーでは生体分子の自己集合を模倣して水素結合や分子間相互作用の協同効果を利用したわけですが、興味深い自己集合構造を与える一番の功労者が、構造解析の面では逆に仇となってしまいました。最終的には、生体分子のNMR解析の専門家である山口先生と協力して、この構造解析の問題を解決しました。

最初のデータが得られてから論文採択までかなり時間がかかりましたが、共同研究先の測定技術・化合物群をうまく組み合わせることで、実験開始当初では予想もできないような成果にすることが出来ました。

Q4. 将来は化学とどう関わっていきたいですか?

今後も引き続き自分のケミストリーを深め、そして拡げていく予定です。この研究は前職の長崎大学における成果ですが、所属を移ってからは固体状態における分子自己集合の研究も開始しました。固体の研究においても興味深い分子性結晶が得られており、その集合構造に由来する興味深い現象も見つかっています。結晶の研究では構造と物性の相関がつけやすく、溶液系にはない利点があるため、その利点を最大限に活かした研究を進めていきたいと考えています。また、今回のように異分野領域との共同研究も進め、各々の学際領域で新しい成果を出していきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまで閲覧いただきありがとうございました。この記事をご覧になった皆さんの中にも、この研究のように実験開始当初では予想もしなかった現象に遭遇した経験をお持ちの方もいらっしゃるかと思います。研究を進めるうえで大事なことは、その時々に遭遇した結果がどのような価値を秘めているかを見極められるかどうかだと感じます。研究経験の浅い学生さんは、実験結果の価値を見極めるのはまだ難しいかもしれません。そういう時こそ教員をはじめとする上級研究者と積極的にディスカッションしてみましょう。そうして少しずつ感覚や嗅覚を磨いていけば、世界中のだれよりも早く、新しい現象に遭遇したことに気づけるようになると思います。

最後に、本研究に関わった多くの方々に感謝申し上げます。特に本研究のような若手研究者発案型テーマを数年に渡って、かつ自発的に進められる研究環境を提供してくださった馬越先生には感謝の言葉しかありません。また研究面だけでなく、長期海外留学の際には、学内業務を引き受けてくださった同じ物質科学部門の先生方や留学引受先の先生方にも、あらためて感謝申し上げます。

研究者の略歴

名前:堀内 新之介(ほりうち・しんのすけ)

所属:東京大学 大学院総合文化研究科 広域科学専攻 相関基礎科学系 講師

研究テーマ:超分子化学、錯体化学、光化学、結晶学

略歴:

2013年3月 博士(工学)取得、東京大学 大学院工学系研究科

2013年1月–2013年3月 University of Amsterdam 客員研究員(短期留学)

2013年4月–2015年3月 分子科学研究所 IMSフェロー

2015年4月–2022年3月 長崎大学 大学院工学研究科 物質科学部門 助教

2018年1月–2018年11月 TU Dortmund University JSPS頭脳循環事業 派遣若手研究者(兼任)

2022年4月– 現職

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 光触媒ーパラジウム協働系によるアミンのC-Hアリル化反応
  2. メタンハイドレートの化学 ~その2~
  3. Slow down, baby, now you’r…
  4. ケムステ国際版・中国語版始動!
  5. YMC研究奨励金当選者の声
  6. TED.comで世界最高の英語プレゼンを学ぶ
  7. 導電性ゲル Conducting Gels: 流れない流体に電気…
  8. 就職活動2014スタートー就活を楽しむ方法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高専の化学科ってどんなところ? -その 1-
  2. サッカーボール型タンパク質ナノ粒子TIP60の設計と構築
  3. 電子学術情報の利活用
  4. ジャン=ルック・ブレダス Jean-Luc Bredas
  5. カイコが紡ぐクモの糸
  6. 新型コロナウイルスの化学への影響
  7. 危険物に関する法令:指定数量の覚え方
  8. 第60回「挑戦と興奮のワイワイ・ワクワク研究センターで社会の未来を切り開く!」畠 賢治 研究センター長
  9. 多才な補酵素:PLP
  10. 有機機能材料 基礎から応用まで

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー

開催日:2024/03/27 申込みはこちら■開催概要材料開発を取り巻く競争や環境が激し…

石谷教授最終講義「人工光合成を目指して」を聴講してみた

bergです。この度は2024年3月9日(土)に東京工業大学 大岡山キャンパスにて開催された石谷教授…

リガンド効率 Ligand Efficiency

リガンド効率 (Ligand Efficacy: LE) またはリガンド効率指数…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP