[スポンサーリンク]

ケムステニュース

熱すると縮む物質を発見 京大化学研

shsimakawa.png
(図中 O=酸素、B=鉄、A=銅、A’=ランタン)

 通常の物質は熱するとふくらむ一方だが、京都大学化学研究所の島川祐一教授(固体化学)、博士研究員の龍有文(ロン・ユーウェン)さんらは、セ氏120度で1%も体積が収縮する物質を見つけ、5日発行の英科学誌ネイチャーで発表した。高温で使う精密機械部品などに応用できそうだ。

 
 通常、物質は温度が上昇すると体積が大きくなります。列車の線路のレールの継ぎ目にはそれぞれ少し隙間が空いています。それは夏に熱さで膨張したレールで線路がゆがまないようにする、つまり膨張に対して余裕を与えてあげてあげているわけです。線路ならばそれでOKですが、精密機械などが高温で膨張してしまっては誤作動の可能性が高くなります。そういうわけで、高温で膨張しない物質が好まれる訳です。

 今回京大化学研究所の島川教授らが合成、発見した物質は、高温で少しだけ体積が小さくなる物質です。このような物質のことを負膨張物質といいます。とはいってもいままで熱膨張しないような物質がなかったわけではありません。
 熱膨張しにくい物質で代表的なものはインバー(inver)合金と呼ばれるFe-Niで構成される合金で、すでに今から110年以上前にスイスの物理学者Charles Edouard Guillaume 博士によって発見され、その功績より彼は1920年のノーベル物理学賞を受賞しています。
 さらに負膨張物質としては1960年代後半に発見された逆ペロフスカイト型マンガン窒化物Mn3XN (X: ? Zn, Gaなど)や[1]、実用化されているタングステン酸ジルコニウム化合物、最近では日本でも2005年にこのマンガン窒化物を改良した(X=Ge)物質が知られていました。
?さて、今回合成した物質は物質は、ランタン、鉄、銅を1対3対4で含む酸化物LaCu3Fe4O12。零下170度から温度を上げると次第に膨張しますが、0.5%ほどふくらんだ120度で、一気に体積が1%収縮し、さらに温度を上げるとまた膨張するということです(図参照)[3]。
 

simakawa2.png

(LaCu3Fe4O12の温度による体積変化)
 この物質はペロブスカイト構造を有しており、120度で鉄のイオンにある電子が銅のイオンへ急激に移動(サイト間電荷移動)し、それぞれのイオンの大きさが変化するのが収縮の原因であると考えられています。ここのように急激な負膨張物質は今までで初めてであるため、Nature掲載にいたったようです。応用研究まで到達するかわかりませんが、大変興味深い結果だと思います。
関連論文
[1] Fruchart, D.; Bertaut, E. F. J. Phys. Soc. Jpn.?1978, 44, 781.
[2]?Takenaka, K.; Takagi, H. Appl. Phys. Lett.?2005, 87, 261902.?
[3]?Shimakawa, Y. et al, Nature, 2009, ASAP DOI:?10.1038/nature07816
関連書籍

強誘電性と高温超電導―ペロブスカイト型材料 (先端材料シリーズ)
裳華房
日本材料科学会(編集)
発売日:1993-12
発送時期:在庫あり。
ランキング:70543
関連リンク
京都大学 化学研究所 附属元素科学国際研究センター 無機先端機能化学(島川 研究室)

Invar – Nickel Iron Alloy
インバー合金について
The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 相原静大教授に日本化学会賞 芳香族の安定性解明
  2. 化学五輪、「金」の高3連続出場 7月に東京開催
  3. 東京化成、1万8千品目のMSDS公開サービス
  4. 周期表を超えて~超原子の合成~
  5. 肩こりにはラベンダーを
  6. 大麻から作られる医薬品がアメリカでオーファンドラッグとして認証へ…
  7. 2010年10大化学ニュース
  8. 理研、119番以降の「新元素」実験開始へ 露と再び対決 ニホニウ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. いつ、どこで体内に 放射性物質に深まる謎
  2. コンベス キノリン合成 Combes Quinoline Synthesis
  3. オルトチタン酸テトライソプロピル:Tetraisopropyl Orthotitanate
  4. ブロモジメチルスルホニウムブロミド:Bromodimethylsulfonium Bromide
  5. ノビリシチンA Nobilisitine A
  6. 「ラブ・ケミストリー」の著者にインタビューしました。
  7. ピナコールカップリング Pinacol Coupling
  8. コバルト触媒でアリル位C(sp3)–H結合を切断し二酸化炭素を組み込む
  9. 米メルク、業績低迷長期化へ
  10. 最近の金事情

関連商品

注目情報

注目情報

最新記事

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す

イナミドと光学活性なアルケニルスルホキシドから、2位および3位に置換基をもつ1,4-ジカルボニル骨格…

サッカーボール型タンパク質ナノ粒子TIP60の設計と構築

第163回目のスポットライトリサーチは、慶應義塾大学理工学部 ・川上了史(かわかみ のりふみ)講師に…

PAGE TOP