[スポンサーリンク]

化学者のつぶやき

tRNAの新たな役割:大豆と微生物のコミュニケーション

[スポンサーリンク]

畑に生えている大豆の根っこを抜いてみると、丸い粒みたいなものがたくさんできています。根粒(こんりゅう)と呼ばれるこの粒つぶの中では、実は地球上の全ての生き物にとって、とても重要な化学反応が行われています。それは、窒素(N2)からアンモニア(NH3)を作る反応、つまり窒素の固定反応です。

植物も動物も、空気中から窒素(N2)を直接取り込むことはできません。そこで、大豆のようなマメ科の植物は、根粒の中に根粒菌という微生物を宿すことで、窒素固定を代わりに行ってもらっています。今回は、根粒菌が大豆の遺伝子発現をコントロールする方法について、Science誌に発表された興味深い論文を紹介します。

“Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation” Ren, B.; Wang, X.; Duan, J.; Ma, J. Science 2019, 365, 919. DOI: 10.1126/science.aav8907

1. 大豆に共生する根粒菌

窒素原子は、DNA・RNAを作る核酸、タンパクを作るアミノ酸、ビタミンB群、ヒアルロン酸など、生き物にとって不可欠な分子の多くに含まれています。ところが、植物や動物は、窒素(N2)を空気中から取り込むことはできません。そこで、窒素を他の生き物でも使える形、アンモニア(NH3)に変えてくれているのが根粒菌などの微生物です(図1。根粒菌は、マメ科植物の根粒の中に住み、植物にアンモニアを供給する代わりに、植物から栄養(糖、有機酸など)を受け取って生きています。このような関係は、根粒にも植物にも有益なので、共生と呼ばれます。

図1. 大豆と根粒菌の共生。

植物と根粒菌の共生を理解することは、化学肥料を減らし、温室効果ガス(N2O)排出・水質汚染を抑制することにもつながるため、とても重要です。今回紹介する論文では、大豆と根粒菌の共生について、ある興味深い発見がなされました。それは、根粒菌が自分のtRNAのかけらを大豆の中に送り込み、大豆の遺伝子発現を制御しているということです。tRNAは、もともとは翻訳の際にアミノ酸を新生タンパクへとつなげる介在分子として知られています。そのtRNAが、根粒菌による大豆の遺伝子発現制御に使われているという点が、今回の論文で特に興味深い点です。そもそもRNAって何だっけ?という人のために、次項で少しRNAの説明をしてから論文の解説に入りたいと思います。

2. RNAの新しい役割 – tRFによる遺伝子の発現制御

RNAって何?と聞かれると、まず思い浮かぶのは、DNAから転写されて翻訳に使われるmRNA(メッセンジャーRNA)のことだと思います。もう少し生物に詳しい人なら、前述のtRNA(トランスファーRNA)や、rRNA(リボソームRNA)のことも思い浮かぶかもしれません(図2)。私が高校時代に生物の授業で習ったのはここまでですが、RNAの概念は最先端の研究でどんどん変わり続けています。

図2. 従来のRNAの役割。

特に、ここ20年の研究で解明されつつあるのが、miRNA(マイクロRNAという小さな一本鎖RNA分子の働きです。miRNAは、20〜25塩基からなるとても小さなRNA分子で、主にmRNAに結合して遺伝子の発現を調節します(図3)。RISC と呼ばれるタンパク複合体に取り込まれたmiRNAは、標的のmRNAを分解したり、その翻訳を阻害したりします。

図3. miRNAによる遺伝子発現の調節。

このような「遺伝子発現の調節」というRNAの機能は、「DNAとタンパクを繋ぐ遺伝情報のコピー(mRNA)」という、従来のRNAの機能と並び、非常に重要なものと位置付けられるようになってきています。なので、RNAって何?と聞かれて、単に「タンパクに翻訳されるもの」と答えた人は半分正解で、本当はRNAは「遺伝子発現の調節」も担っています。

さて、RNAによる遺伝子発現の調節について、特に最近になって注目を浴び始めているのが、tRNA由来の小さなRNA分子(tsRNA)です。tRNAは、もともとは翻訳時にアミノ酸を転移させる介在分子として知られていましたが、最近では、酵素によって切断されたtRNAの一部が、miRNAのように遺伝子発現の調節を行うことが明らかになりつつあります(図4)。特に小さな18〜30塩基のものはtRF(tRNA-derived fragment;tRNA由来断片)と呼ばれ、ガン、免疫応答、神経変性疾患などとも関わることが報告されています。

図4. tRNA由来断片、tRF。

3. 根粒菌のtRFが、大豆の根粒形成を促進する

さて、Purdue大学で大豆の研究に取り組んでいたJianxin Ma教授らは、RNA配列を解析する中で、根粒菌のtRFが、大豆の遺伝子にマッチすることを見出しました(図5)。配列がマッチしているということは、根粒菌のtRFが大豆の遺伝子に何らかの作用を及ぼしている可能性があります。

図5. 根粒菌のtRNAと大豆の遺伝子。

彼らは、まず標的遺伝子の役割を調べるため、大豆の標的遺伝子をノックアウトし、どのような影響が出るかを調べました(図6a)。すると、ノックアウト後の大豆では、根粒の数が増大することが分かりました(図6b)。ノックアウトすると根粒形成が促進される、つまり逆に考えると、標的遺伝子は根粒形成を抑制させる働きを持っていると言えます。

図6. (a) 標的遺伝子のノックアウト。(b)大豆の根粒形成の様子。(論文より)

次に、tRFの効果を調べるため、tRFに結合して働きを阻害する配列(STTM;short tandem target mimic)を大豆に導入し、根粒形成の様子を調べました。すると、STTM導入後の大豆では、根粒の数が減少することが分かりました(図7)。tRFを阻害すると根粒形成が抑制される、ということは、tRFは根粒形成を促進する役割を果たしていると考えられます。

図7. (a) 大豆へのtRFの阻害因子(STTM)の導入。STTMは、tRFと相補的な配列を持ち、tRFに結合して働きを阻害する。一部、非相補配列を含むため、tRFによる干渉が起こらない。(b) 大豆の根粒形成の様子。(論文より)

さらに論文中では、根粒菌のtRFが、大豆のAGOタンパク(AGO1)と結合することも示されています。AGOタンパクとは、miRNAやsiRNAに結合し、mRNAの切断や翻訳阻害を行うタンパクのことで、RNA誘導サイレンシング複合体(RISC)の主要な構成要素でもあります。

一連の実験から、次のようなモデルが立てられます(図8)。

  1. 大豆の根粒形成は、標的遺伝子によって抑制されている。
  2. 根粒菌が大豆の根に集まると、根粒菌のtRFが大豆に送られる。
  3. tRFが大豆のAGOタンパクと結合し、標的遺伝子を切断。
  4. 標的遺伝子の発現が抑制されることで、大豆の根粒形成が促進される。

図8. 根粒菌のtRFによる大豆の根粒形成の促進。

4. おわりに

今回の論文では、大豆に共生する根粒菌が、大豆にtRNA断片を送り込み、遺伝子発現を外部から調節していることが示されました。根粒菌から送り込まれたtRFは、大豆の持つAGOタンパクを乗っ取り、標的となる大豆の遺伝子を切断します。

tRFがどのようにして原核生物・真核生物という異なる生物の間で機能するようになったのか、tRNAにアミノ酸転移と遺伝子発現調節という2つの機能が同時に与えられていることの意義は何なのか、まだまだ知られていないことは多々ありますが、今後解明されていくことが期待されます。

参考文献

  1. Udvardi, M.; Poole, P. S. Annu. Rev. Plant Biol. 2013, 64, 781. DOI: 10.1146/annurev-arplant-050312-120235
  2. Kanai, A. Life 2015, 5, 321. DOI: 10.3390/life5010321
  3. Li, S.; Xu, Z.; Sheng, J. Genes 2018, 9, 246. DOI: 10.3390/genes9050246

関連リンク

関連書籍

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. 抽出精製型AJIPHASE法の開発
  2. 化学を広く伝えるためにー多分野融合の可能性ー
  3. “呼吸するセラミックス” を使った酸素ガス分離・製造
  4. 低投資で効率的な英語学習~有用な教材は身近にある!
  5. 研究室の大掃除マニュアル
  6. 有機反応を俯瞰する ー[1,2] 転位
  7. 近況報告PartII
  8. 有機化学を俯瞰する -有機化学の誕生から21世紀まで–【後編】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 活性酸素・フリーラジカルの科学: 計測技術の新展開と広がる応用
  2. 芝哲夫氏死去(大阪大名誉教授・有機化学)
  3. ボイランド・シムズ酸化 Boyland-Sims Oxidation
  4. 高橋 大介 Daisuke Takahashi
  5. スペクトルから化合物を検索「KnowItAll」
  6. 化学反応を起こせる?インタラクティブな元素周期表
  7. エーザイ、アルツハイマー治療薬でスウェーデン企業と提携
  8. 「芳香族共役ポリマーに学ぶ」ーブリストル大学Faul研より
  9. ロバート・メリフィールド Robert B. Merrifield
  10. 「炭素ナノリング」の大量合成と有機デバイス素子の作製に成功!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP