[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~化合物半導体編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は、半導体研究の最前線と、将来を担う新たな半導体材料についてご紹介します。

半導体素子のイメージ(画像:Wikipedia

シリコンの限界

半導体には長らくシリコンSiが採用されてきましたが、パワーデバイス用途に限定すると、すでにシリコンの物性限界に迫るところまで性能向上がなされてきました。すなわち、これ以上の省電力化や小型化を実現するには、シリコンよりも優れた物性を示す次世代半導体が欠かせません。近年、高周波・光・パワー分野などに強みを持つ材料として、バンドギャップの大きいワイドバンドギャップ半導体がひときわ脚光を浴びています。

ワイドギャップ半導体には絶縁破壊電界が高いという利点があり、耐圧性能を保ちながら耐圧層を薄くすることができます。これはオン抵抗の低下を意味し、電力損失の低減につながります。そのため、ワイドギャップ半導体は、大電力を扱うパワーデバイスへの応用がとりわけ重要視されており、その最たるものが自動車関連です。

近年、自動車産業は車それ自体のIoT化ともいうべき自動運転の導入をはじめとする重大な転換期に差し掛かっており、従来は機械的な機構で行われていた制御が電子制御に代替されていくものと見込まれます。そのためには、車の運動エネルギーに相当する大電力を迅速に扱うことが要求され、さらに耐熱性能も必須となります。

ただし、車載用途は単結晶製品としての信頼性と、安定した供給を可能とする量産技術の確立が求められることから、その質と量の両立が課題となるものと思われます。

自動車への半導体の利用が加速しています(画像:Wikipedia

演算用などの小電力用途でのシリコンの地位は当面の安定が期待されますが、その他の分野では化合物半導体が存在感を増していくこととなるでしょう。

単体元素のうち半導体的な物性を示すものにはシリコンのほかにゲルマニウムGe、セレンSeが挙げられますが、いずれもバンドギャップが大きくありません。そのため、これらの用途には化合物半導体が用いられることとなります。

化合物半導体とは

化合物半導体はその名の通り、2種類以上の元素からなる化合物であることから、元素の組み合わせに応じて多種多様な性能を示します。

その研究史は案外古く、実はゲルマニウムやシリコンよりもはるか前の1874年にドイツのフェルディナント・ブラウンの手で方鉛鉱と黄鉄鉱の整流作用が発見されたことに遡ります。20世紀初頭にはこれを利用した鉱石検波器が無線通信に利用されるようになります。これを改良した酸化銅整流器やセレン整流器が広く普及したものの、当時はその原理は謎に包まれたままでした。

その後のゲルマニウム半導体の研究を契機にこれらの化合物半導体についても理解が進んでいきましたが、加工の容易なゲルマニウム、シリコンに駆逐されていくという皮肉な結果を招きました。

鉱石検波器(画像:Wikipedia

次世代の半導体

今後の用途拡大が期待される代表的な材料としては、耐圧性能に優れた炭化ケイ素SiCと高速応答に特化した窒化ガリウムGaN、そして次世代のパワー半導体材料の主力となることが期待される酸化ガリウムGa2O3などがあります。

また、化合物半導体には波数空間でバンド図を描いたときに伝導帯の底と価電子帯の頂上が同一の波数ベクトル上に存在するような直接遷移型の半導体材料もいくつか見つかっています。直接遷移型の半導体では電子と正孔の再結合時にエネルギーが光子として放出されるため、LEDやレーザーダイオードに応用可能です。対する間接遷移型の半導体(シリコンやゲルマニウムも含まれます)では再結合はフォノンや結晶欠陥などを介するため、大幅に弱い発光となります。波数空間(k空間)やバンド図の概念については固体物理学分野の成書に譲りますが、有機材料分野における一重項励起と三重項励起の対応によく似た関係と捉えていただければ幸いです。

このような直接遷移の特性を活かし、GaNはノーベル賞にも選定された青色発光ダイオードの材料としても使われています。

青色発光ダイオード(画像:Wikipedia

優れた特性を示し、既に身の回りで利用され始めているGaNとSiCですが、ウエハの製造コストの高さがネックとなっています。融液からチョクラルスキー法で調整可能なシリコンと異なり融解前に昇華・分解しやすいこれらの材料はCVDなどでウエハを調製するほかなく、これが製造コストの低減を妨げています。シリコンウエハの製造コストが100円/cm2以下であるのに対して、SiCは1500円、GaNでは40000円を上回るとされています。

そこで近年注目されているのが、比較的融点の低い酸化ガリウムです。2020年現在では実用的な基盤製造法の開発途上にありますが、近い将来安価に大量生産することが可能とみられています。さらに、この酸化ガリウムはオン抵抗が極めて低いなど高性能であり、とりわけ高周波帯での理論損失では他の追随を許しません。これまで半世紀以上にわたって半導体材料の花形であり続けたシリコンを、化合物半導体が放逐する日がいずれ来るかもしれませんね。

 

関連サイト

酸化ガリウムの新規ワイドギャップ半導体としての電子デバイス応用へ向けた技術開発課題(国立研究開発法人科学技術振興機構 低炭素社会戦略センター

PC Watch 福田昭のセミコン業界最前線

サンケン電気

関連書籍

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 2015年化学生物総合管理学会春季討論集会
  2. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  3. コバルト触媒でアリル位C(sp3)–H結合を切断し二酸化炭素を組…
  4. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  5. 2017年始めに100年前を振り返ってみた
  6. 地方の光る化学商社~長瀬産業殿~
  7. イミンを求核剤として反応させる触媒反応
  8. 2016年ケムステ人気記事ランキング

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2011年10大化学ニュース【後編】
  2. グラクソ、パーキンソン病治療薬「レキップ錠」を販売開始
  3. 塩にまつわるよもやま話
  4. 周期表の歴史を振り返る【周期表生誕 150 周年特別企画】
  5. 海外で働いている僕の体験談
  6. 実験ノートの字について
  7. 特許の基礎知識(2)「発明」って何?
  8. iPadで使えるChemDrawが発売開始
  9. バートン トリフルオロメチル化 Burton Trifluoromethylation
  10. 生体分子機械の集団運動の制御に成功:環境適応能や自己修復機能の発見

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第18回ケムステVシンポ『”やわらか電子材料” 有機半導体の世界』を開催します!

こんにちは、Spectol21です。作日、第16回ケムステVシンポが開催され、来週には第17回ケムス…

有機合成化学協会誌2021年6月号:SGLT2阻害薬・シクロペンチルメチルエーテル・4-メチルテトラヒドロピラン・糖-1-リン酸・新規ホスホジエステラーゼ阻害薬

有機合成化学協会が発行する有機合成化学協会誌、2021年6月号がオンライン公開されました。新…

フェノール類を選択的に加水素分解する新触媒を開発:リグニンから芳香族炭化水素へ

第316回のスポットライトリサーチは、東京大学大学院工学系研究科 化学生命工学専攻(野崎研究室)・金…

【書籍】化学系学生にわかりやすい 平衡論・速度論

『化学系学生にわかりやすい 平衡論・速度論』(酒井 健一 著、コロナ社)という書籍をご紹介します。…

これからの理系の転職について考えてみた

Employability(エンプロイアビリティ)という言葉をご存じでしょうか。…

日本で始まる最先端半導体の開発 ~多くの素材メーカーが参画~

半導体の受託生産で世界最大手の台湾積体電路製造(TSMC)が茨城県つくば市に研究開発拠点を新設し、最…

「リチウムイオン電池用3D炭素電極の開発」–Caltech・Greer研より

久々のケムステ海外研究記です。第40回はカリフォルニア工科大学(Caltech)材料科学科のPhD課…

ペプシとヒドラゾンが作る枝分かれフッ素化合物

gem-ジフルオロシクロプロパンを原料としたbranch選択的なモノフルオロアルケン合成法が開発され…

Chem-Station Twitter

PAGE TOP