[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~化合物半導体編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は、半導体研究の最前線と、将来を担う新たな半導体材料についてご紹介します。

半導体素子のイメージ(画像:Wikipedia

シリコンの限界

半導体には長らくシリコンSiが採用されてきましたが、パワーデバイス用途に限定すると、すでにシリコンの物性限界に迫るところまで性能向上がなされてきました。すなわち、これ以上の省電力化や小型化を実現するには、シリコンよりも優れた物性を示す次世代半導体が欠かせません。近年、高周波・光・パワー分野などに強みを持つ材料として、バンドギャップの大きいワイドバンドギャップ半導体がひときわ脚光を浴びています。

ワイドギャップ半導体には絶縁破壊電界が高いという利点があり、耐圧性能を保ちながら耐圧層を薄くすることができます。これはオン抵抗の低下を意味し、電力損失の低減につながります。そのため、ワイドギャップ半導体は、大電力を扱うパワーデバイスへの応用がとりわけ重要視されており、その最たるものが自動車関連です。

近年、自動車産業は車それ自体のIoT化ともいうべき自動運転の導入をはじめとする重大な転換期に差し掛かっており、従来は機械的な機構で行われていた制御が電子制御に代替されていくものと見込まれます。そのためには、車の運動エネルギーに相当する大電力を迅速に扱うことが要求され、さらに耐熱性能も必須となります。

ただし、車載用途は単結晶製品としての信頼性と、安定した供給を可能とする量産技術の確立が求められることから、その質と量の両立が課題となるものと思われます。

自動車への半導体の利用が加速しています(画像:Wikipedia

演算用などの小電力用途でのシリコンの地位は当面の安定が期待されますが、その他の分野では化合物半導体が存在感を増していくこととなるでしょう。

単体元素のうち半導体的な物性を示すものにはシリコンのほかにゲルマニウムGe、セレンSeが挙げられますが、いずれもバンドギャップが大きくありません。そのため、これらの用途には化合物半導体が用いられることとなります。

化合物半導体とは

化合物半導体はその名の通り、2種類以上の元素からなる化合物であることから、元素の組み合わせに応じて多種多様な性能を示します。

その研究史は案外古く、実はゲルマニウムやシリコンよりもはるか前の1874年にドイツのフェルディナント・ブラウンの手で方鉛鉱と黄鉄鉱の整流作用が発見されたことに遡ります。20世紀初頭にはこれを利用した鉱石検波器が無線通信に利用されるようになります。これを改良した酸化銅整流器やセレン整流器が広く普及したものの、当時はその原理は謎に包まれたままでした。

その後のゲルマニウム半導体の研究を契機にこれらの化合物半導体についても理解が進んでいきましたが、加工の容易なゲルマニウム、シリコンに駆逐されていくという皮肉な結果を招きました。

鉱石検波器(画像:Wikipedia

次世代の半導体

今後の用途拡大が期待される代表的な材料としては、耐圧性能に優れた炭化ケイ素SiCと高速応答に特化した窒化ガリウムGaN、そして次世代のパワー半導体材料の主力となることが期待される酸化ガリウムGa2O3などがあります。

また、化合物半導体には波数空間でバンド図を描いたときに伝導帯の底と価電子帯の頂上が同一の波数ベクトル上に存在するような直接遷移型の半導体材料もいくつか見つかっています。直接遷移型の半導体では電子と正孔の再結合時にエネルギーが光子として放出されるため、LEDやレーザーダイオードに応用可能です。対する間接遷移型の半導体(シリコンやゲルマニウムも含まれます)では再結合はフォノンや結晶欠陥などを介するため、大幅に弱い発光となります。波数空間(k空間)やバンド図の概念については固体物理学分野の成書に譲りますが、有機材料分野における一重項励起と三重項励起の対応によく似た関係と捉えていただければ幸いです。

このような直接遷移の特性を活かし、GaNはノーベル賞にも選定された青色発光ダイオードの材料としても使われています。

青色発光ダイオード(画像:Wikipedia

優れた特性を示し、既に身の回りで利用され始めているGaNとSiCですが、ウエハの製造コストの高さがネックとなっています。融液からチョクラルスキー法で調整可能なシリコンと異なり融解前に昇華・分解しやすいこれらの材料はCVDなどでウエハを調製するほかなく、これが製造コストの低減を妨げています。シリコンウエハの製造コストが100円/cm2以下であるのに対して、SiCは1500円、GaNでは40000円を上回るとされています。

そこで近年注目されているのが、比較的融点の低い酸化ガリウムです。2020年現在では実用的な基盤製造法の開発途上にありますが、近い将来安価に大量生産することが可能とみられています。さらに、この酸化ガリウムはオン抵抗が極めて低いなど高性能であり、とりわけ高周波帯での理論損失では他の追随を許しません。これまで半世紀以上にわたって半導体材料の花形であり続けたシリコンを、化合物半導体が放逐する日がいずれ来るかもしれませんね。

 

関連サイト

酸化ガリウムの新規ワイドギャップ半導体としての電子デバイス応用へ向けた技術開発課題(国立研究開発法人科学技術振興機構 低炭素社会戦略センター

PC Watch 福田昭のセミコン業界最前線

サンケン電気

関連書籍

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 【経験者に聞く】マテリアルズ・インフォマティクスの事業開発キャリ…
  2. 有機EL素子の開発と照明への応用
  3. 陶磁器釉の構造入門-ケイ酸、アルカリ金属に注目-
  4. 落葉の化学~「コロ助の科学質問箱」に捧ぐ
  5. ラジカルの安定性を越えろ! ジルコノセン/可視光レドックス触媒を…
  6. 燃える化学の動画を集めてみました
  7. プレプリントサーバー:ジャーナルごとの対応差にご注意を【更新版】…
  8. プロテオミクス現場の小話(1)前処理環境のご紹介

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 持続可能社会をつくるバイオプラスチック
  2. 化学系学生のための就活2019
  3. 福井鉄道と大研化学工業、11月に電池使い車両運行実験
  4. 固体NMR
  5. ピンナ酸の不斉全合成
  6. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  7. 1,3-ビス(2,4,6-トリメチルフェニル)イミダゾリニウムクロリド:1,3-Bis(2,4,6-trimethylphenyl)imidazolinium Chloride
  8. 特許の効力と侵害
  9. 立体電子効果―三次元の有機電子論
  10. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP