[スポンサーリンク]

化学者のつぶやき

ESIPTを2回起こすESDPT分子

[スポンサーリンク]

 

蛍光分子は有機エレクトロルミネッセンス(EL)分野やバイオイメージングなどで幅広く用いられる有機化合物群です。

一般的に、分子のπ共役系を拡張すると蛍光色は長波長になるため、π共役系の拡張度をチューニングすることで多様な色調の蛍光分子が開発されてきました。しかし、赤色から近赤外のような長波長領域に蛍光特性をもつ分子を設計するには、π共役系を拡張するだけでは難しく、「いかにしてストークスシフトを大きくするか」という点が鍵になります。

ストークスシフトとは吸収極大と蛍光極大のエネルギー差のことであり、これを大きくするためのアプローチとして、これまでに

  1. 励起状態での分子内電荷移動の利用[1]
  2. 励起状態でのダイナミックな構造変化の利用[2]
  3. 励起状態での分子内プロトン移動(ESIPT:excited-state intramolecular proton transfer)の利用[3]

が提案されています(図 1)。

図1. ストークスシフトを大きくする分子設計

図1. ストークスシフトを大きくする分子設計

 

いずれの分子設計も励起状態での分子構造の変化を利用してストークスシフトを大きくしている例です。今回は3の励起状態での分子内プロトン移動(ESIPT)を利用したアプローチの新しい取り組みについてお話しましょう。

 

ESIPTと代表的分子

ESIPTは、励起状態において分子内でプロトンが基底状態とは異なる原子へ移動する現象です。

代表的なESIPT分子であるHBO(hydroxyphenyl benzoxazole)を図 2に示します。HBOはフェノール性水酸基がベンゾオキサゾール環の窒素原子と分子内水素結合を形成しています。この分子が励起されS1に移動すると直ちに、基底状態では水酸基側に局在していたプロトンがベンゾオキサゾール環の窒素原子上へ移動します。ESIPT分子は、このプロトン移動が輻射失活のはやさ(ナノ秒)よりも遥かにはやいピコ秒オーダーで進行するため、N*からの蛍光はほとんど観測されず、TA*からの蛍光が支配的となります。

ESIPT分子を特徴付ける大きなストークスシフトはこのTA*からの蛍光に由来し、HBOの場合では吸収極大波長を335 nm(紫外領域)にもちながらも蛍光極大波長は508 nmで可視光領域の緑色を示します。

 

図2. ESIPTによるストークスシフト増大

図2. ESIPTによるストークスシフト増大

 

最近国立台湾大学のChouらは、励起状態の分子内における2回のプロトン移動(ESDPT:excited-state double proton transfer)を用いて、より大きなストークスシフトを実現しました。

Optically Triggered Stepwise Double-Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde

Peng, C.-Y.; Shen, J.-Y.; Chen, Y.-T.; Wu, P.-J.; Hung, W.-Y.; Hu, W.-P.; Chou, P.-T.;J. Am. Chem. Soc. 2015, 137, 14349. DOI: 10.1021/jacs.5b08562

 

以下、この論文を中心にしてESDPT分子を紹介したいと思います。

 

ESDPT分子とESDPTに由来する蛍光

  • ESDPT分子の提案

これまでの研究で1-hydroxy-2-naphthaldehyde (HN12)がESIPT蛍光を示すことが知られていました[4]。最近、Chouらはこの構造から分子内の水素結合部位をさらに一箇所増やした1,8-dihydroxy-2-naphthaldehyde (DHNA)に注目しました(図3)。ESIPTによりTA*が生成したのち、励起状態でもう1度プロトン移動が起こることでTB*が生成し、ESDPTが達成されると予想しました。

2016-01-11_11-31-21

図3. ESDPT分子の設計

 

  • 物性評価

彼らはDHNAを合成し、その吸収・蛍光特性を評価しました。DHNAの吸収および蛍光スペクトルを図 4に示します。

DHNAは400 nm付近にπ–π*遷移に対応する極大吸収をもち(図 4 黒破線)、この波長で励起されたDHNA は500 nmから700 nmにわたる長波長の幅広い蛍光を発します(図 4 黒実線)。この幅広い蛍光は520 nmと640 nmに蛍光極大をもつ2つの蛍光成分からなり、このことはDHNA が励起状態において基底状態とは異なる2つの構造をとっていること示唆しています。

 

図4. DHNAの吸収および蛍光スペクトル

図4. DHNAの吸収および蛍光スペクトル

 

また、DHNAの蛍光特性について詳細に調べるため、520 nmおよび640 nmにおける蛍光寿命測定を行っています(図 5a)。

蛍光寿命測定の結果から、Figure 5bに示した機構でESDPTが起こっていることが実験的に示されました。まず、DHNAは励起されると150 fs以下の非常にはやいタイムスケールで分子内プロトン移動を起こし、TA*を生成します。生成したTA*はピコ秒オーダーでもう1回プロトン移動を起こすことでTB*を生成します。このように励起状態でリレー形式のプロトン移動を経由することでESDPTが達成されることが明らかとなっています。また、TA*からTB*へのプロトン移動が平衡であるため2つの励起状態に由来する520 nm、640 nmの蛍光がともに観測されることがわかりました。

 

2016-01-11_11-34-08

図5. a) 蛍光寿命測定、b) ESDPT機構

 

おわりに

今回ChouらはESIPTを2回起こすESDPT分子としてDHNAを提示し、リレー形式の分子内プロトン移動の観測とこれに伴うストークスシフトの増加を達成しました。励起状態で多段階の分子内プロトン移動を経由することで大きなストークスシフトをもつ分子を実現した本研究は今後の蛍光分子の設計指針に大きく影響を与えるのではないかと思います。

 

参考文献

  1. Grabowski, Z. R. Pure Appl. Chem. 1993, 65, 1751. DOI: 10.1351/pac199365081751
  2. Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.; Yamaguchi, S. Chem. Eur. J. 2014, 20, 2193. DOI: 10.1002/chem.201303955
  3. Woolfe, G. J.; Melzig, M.; Schneider, S.; Dorr, F. C. Chem. Phys. 1983, 77, 213. DOI: 10.1016/0301-0104(83)85078-2
  4. Tobita, S.; Yamamoto, M.; Kurahayashi, N.; Tsukagoshi, R.; Nakamura, Y.; Shizuka, H. J. Phys. Chem. A. 1998, 102, 5206. DOI: 10.1021/jp981368+
  5. 井上晴夫・高木克彦・佐々木政子・朴鐘震 『光化学Ⅰ』(基礎化学コース)丸善出版(1999)

 

関連書籍

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 最近の有機化学注目論文3
  2. 電化で実現する脱炭素化ソリューション 〜蒸留・焼成・ケミカルリ…
  3. 夏のお肌に。ファンデーションの化学
  4. もう別れよう:化合物を分離・精製する|第5回「有機合成実験テクニ…
  5. リケジョ注目!ロレアル-ユネスコ女性科学者日本奨励賞-2013
  6. アザヘテロ環をあざとく作ります
  7. プラスチック類の選別のはなし
  8. 科研費の審査員を経験して

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ブレデレック試薬 Bredereck’s Reagent
  2. 第143回―「単分子エレクトロニクスと化学センサーの研究」Nongjian (NJ) Tao 教授
  3. ルーブ・ゴールドバーグ反応 その2
  4. アゾ化合物シストランス光異性化
  5. 2008年10大化学ニュース
  6. 米のヒ素を除きつつ最大限に栄養を維持する炊き方が解明
  7. ストライカー試薬 Stryker’s Reagent
  8. Essential細胞生物学
  9. 第92回―「金属錯体を結合形成触媒へ応用する」Rory Waterman教授
  10. Comprehensive Organic Transformations: A Guide to Functional Group Preparations

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!

2022年のノーベル化学賞は「クリックケミストリーと生体直交化学」の開発業績で、バリー・シャープレス…

in-situ放射光X線小角散実験から明らかにする牛乳のナノサイエンス

第425回のスポットライトリサーチは、高エネルギー加速器研究機構 物質構造科学研究所(物構研)の高木…

アセトアミノフェン Acetaminophen

 アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタ…

不安定な高分子原料を従来に比べて 50 倍安定化することに成功! ~水中での化学反応・材料合成に利用可能、有機溶媒の大幅削減による脱炭素に貢献~

第424回のスポットライトリサーチは、京都工芸繊維大学大学院工芸科学研究科 バイオベースマテリアル学…

【10月開催】マイクロ波化学ウェブセミナー

<内容>今月もテーマを分けて2回開催いたします。第一…

越野 広雪 Hiroyuki Koshino

越野 広雪(こしの ひろゆき)は、NMRやマススペクトルなどのもとにした有機分子の構造解析を専門とす…

bassler ボニー・L.・バスラー Bonnie L. Bassler

ボニー・L.・バスラー (Bonnie Lynn Bassler , 1962年XX月XX日-)は、…

電子を閉じ込める箱: 全フッ素化キュバンの合成

第 423 回のスポットライトリサーチは、東京大学 工学系研究科 化学生命工学専…

プラズモンTLC:光の力でナノ粒子を自在に選別できる新原理クロマトグラフィー

第422回のスポットライトリサーチは、名古屋大学 大学院工学研究科 鳥本研究室の秋吉 一孝 (あきよ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2022/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP