[スポンサーリンク]

化学者のつぶやき

ESIPTを2回起こすESDPT分子

[スポンサーリンク]

 

蛍光分子は有機エレクトロルミネッセンス(EL)分野やバイオイメージングなどで幅広く用いられる有機化合物群です。

一般的に、分子のπ共役系を拡張すると蛍光色は長波長になるため、π共役系の拡張度をチューニングすることで多様な色調の蛍光分子が開発されてきました。しかし、赤色から近赤外のような長波長領域に蛍光特性をもつ分子を設計するには、π共役系を拡張するだけでは難しく、「いかにしてストークスシフトを大きくするか」という点が鍵になります。

ストークスシフトとは吸収極大と蛍光極大のエネルギー差のことであり、これを大きくするためのアプローチとして、これまでに

  1. 励起状態での分子内電荷移動の利用[1]
  2. 励起状態でのダイナミックな構造変化の利用[2]
  3. 励起状態での分子内プロトン移動(ESIPT:excited-state intramolecular proton transfer)の利用[3]

が提案されています(図 1)。

図1. ストークスシフトを大きくする分子設計

図1. ストークスシフトを大きくする分子設計

 

いずれの分子設計も励起状態での分子構造の変化を利用してストークスシフトを大きくしている例です。今回は3の励起状態での分子内プロトン移動(ESIPT)を利用したアプローチの新しい取り組みについてお話しましょう。

 

ESIPTと代表的分子

ESIPTは、励起状態において分子内でプロトンが基底状態とは異なる原子へ移動する現象です。

代表的なESIPT分子であるHBO(hydroxyphenyl benzoxazole)を図 2に示します。HBOはフェノール性水酸基がベンゾオキサゾール環の窒素原子と分子内水素結合を形成しています。この分子が励起されS1に移動すると直ちに、基底状態では水酸基側に局在していたプロトンがベンゾオキサゾール環の窒素原子上へ移動します。ESIPT分子は、このプロトン移動が輻射失活のはやさ(ナノ秒)よりも遥かにはやいピコ秒オーダーで進行するため、N*からの蛍光はほとんど観測されず、TA*からの蛍光が支配的となります。

ESIPT分子を特徴付ける大きなストークスシフトはこのTA*からの蛍光に由来し、HBOの場合では吸収極大波長を335 nm(紫外領域)にもちながらも蛍光極大波長は508 nmで可視光領域の緑色を示します。

 

図2. ESIPTによるストークスシフト増大

図2. ESIPTによるストークスシフト増大

 

最近国立台湾大学のChouらは、励起状態の分子内における2回のプロトン移動(ESDPT:excited-state double proton transfer)を用いて、より大きなストークスシフトを実現しました。

Optically Triggered Stepwise Double-Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde

Peng, C.-Y.; Shen, J.-Y.; Chen, Y.-T.; Wu, P.-J.; Hung, W.-Y.; Hu, W.-P.; Chou, P.-T.;J. Am. Chem. Soc. 2015, 137, 14349. DOI: 10.1021/jacs.5b08562

 

以下、この論文を中心にしてESDPT分子を紹介したいと思います。

 

ESDPT分子とESDPTに由来する蛍光

  • ESDPT分子の提案

これまでの研究で1-hydroxy-2-naphthaldehyde (HN12)がESIPT蛍光を示すことが知られていました[4]。最近、Chouらはこの構造から分子内の水素結合部位をさらに一箇所増やした1,8-dihydroxy-2-naphthaldehyde (DHNA)に注目しました(図3)。ESIPTによりTA*が生成したのち、励起状態でもう1度プロトン移動が起こることでTB*が生成し、ESDPTが達成されると予想しました。

2016-01-11_11-31-21

図3. ESDPT分子の設計

 

  • 物性評価

彼らはDHNAを合成し、その吸収・蛍光特性を評価しました。DHNAの吸収および蛍光スペクトルを図 4に示します。

DHNAは400 nm付近にπ–π*遷移に対応する極大吸収をもち(図 4 黒破線)、この波長で励起されたDHNA は500 nmから700 nmにわたる長波長の幅広い蛍光を発します(図 4 黒実線)。この幅広い蛍光は520 nmと640 nmに蛍光極大をもつ2つの蛍光成分からなり、このことはDHNA が励起状態において基底状態とは異なる2つの構造をとっていること示唆しています。

 

図4. DHNAの吸収および蛍光スペクトル

図4. DHNAの吸収および蛍光スペクトル

 

また、DHNAの蛍光特性について詳細に調べるため、520 nmおよび640 nmにおける蛍光寿命測定を行っています(図 5a)。

蛍光寿命測定の結果から、Figure 5bに示した機構でESDPTが起こっていることが実験的に示されました。まず、DHNAは励起されると150 fs以下の非常にはやいタイムスケールで分子内プロトン移動を起こし、TA*を生成します。生成したTA*はピコ秒オーダーでもう1回プロトン移動を起こすことでTB*を生成します。このように励起状態でリレー形式のプロトン移動を経由することでESDPTが達成されることが明らかとなっています。また、TA*からTB*へのプロトン移動が平衡であるため2つの励起状態に由来する520 nm、640 nmの蛍光がともに観測されることがわかりました。

 

2016-01-11_11-34-08

図5. a) 蛍光寿命測定、b) ESDPT機構

 

おわりに

今回ChouらはESIPTを2回起こすESDPT分子としてDHNAを提示し、リレー形式の分子内プロトン移動の観測とこれに伴うストークスシフトの増加を達成しました。励起状態で多段階の分子内プロトン移動を経由することで大きなストークスシフトをもつ分子を実現した本研究は今後の蛍光分子の設計指針に大きく影響を与えるのではないかと思います。

 

参考文献

  1. Grabowski, Z. R. Pure Appl. Chem. 1993, 65, 1751. DOI: 10.1351/pac199365081751
  2. Yuan, C.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.; Yamaguchi, S. Chem. Eur. J. 2014, 20, 2193. DOI: 10.1002/chem.201303955
  3. Woolfe, G. J.; Melzig, M.; Schneider, S.; Dorr, F. C. Chem. Phys. 1983, 77, 213. DOI: 10.1016/0301-0104(83)85078-2
  4. Tobita, S.; Yamamoto, M.; Kurahayashi, N.; Tsukagoshi, R.; Nakamura, Y.; Shizuka, H. J. Phys. Chem. A. 1998, 102, 5206. DOI: 10.1021/jp981368+
  5. 井上晴夫・高木克彦・佐々木政子・朴鐘震 『光化学Ⅰ』(基礎化学コース)丸善出版(1999)

 

関連書籍

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 磁力で生体触媒反応を制御する
  2. 兄貴達と化学物質
  3. 新しいエポキシ化試薬、Triazox
  4. 胃薬のラニチジンに発がん性物質混入のおそれ ~簡易まとめ
  5. 水分子が見えた! ー原子間力顕微鏡を用いた水分子ネットワークの観…
  6. メソポーラスシリカ(2)
  7. 複雑分子を生み出す脱水素型ディールス・アルダー反応
  8. Google日本語入力の専門用語サジェストが凄すぎる件:化学編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ナノチューブを大量生産、産業技術総合研が技術開発
  2. 鉄の新たな可能性!?鉄を用いたWacker型酸化
  3. ウェブサイトのリニューアル
  4. 電子ノートか紙のノートか
  5. アフリカの化学ってどうよ?
  6. ニッケル-可視光レドックス協働触媒系によるC(sp3)-Hチオカルボニル化
  7. ソニー、新型リチウムイオン充電池「Nexelion」発売
  8. チオカルバマートを用いたCOSのケミカルバイオロジー
  9. 決算短信~日本触媒と三洋化成の合併に関連して~
  10. 天然の日焼け止め?

関連商品

注目情報

注目情報

最新記事

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

コロナウイルスが免疫システムから逃れる方法(1)

新型コロナウイルスによる感染症が、世界中で猛威を振るっています。この記事を書いている私も、大学の閉鎖…

換気しても、室内の化学物質は出ていかないらしい。だからといって、健康被害はまた別の話!

Human health is affected by indoor air quality. On…

Chem-Station Twitter

PAGE TOP