[スポンサーリンク]

odos 有機反応データベース

ボロン酸の保護基 Protecting Groups for Boronic Acids

[スポンサーリンク]

概要

ボロン酸は酸素や水に安定で扱いやすく、結晶性も高く固体になりやすい。鈴木カップリングの基質などに有用な化合物である。しかし無保護体は精製がしばしば困難であること、脱水三量化によるボロキシン形成などを経て定量が難しくなること、化合物によっては酸や酸化剤などに不安定であることから、保護された単量体で取り扱うことが多い。

保護基の例

よく使われる保護基は以下の通りである。多くの場合はジオールの環状エステルとして保護する場合が多い。ジオールの立体障害が大きいほど、加水分解に対しては安定になる(逆にジオールの保護目的でボロン酸を使う例も存在する)。モノオール非環状エステルは保護目的ではほとんど用いられない。

boronate_pg_1

  • ピナコールエステル(pin):最もポピュラーな保護基。宮浦ホウ素化ハートウィグホウ素化などでも簡便に調製できる。適度に反応性があり、酸化によってアルコールへと変換し、鈴木カップリングの基質としてそのまま使うことも可能。カラム精製も可能である。反面、かなり安定であるため、加水分解によって無保護ボロン酸や他のボロン酸保護体に導くことはしばしば困難である。
  • ジアミノナフタレンアミド(dan):各種条件に対して非常に耐性のある保護基。隣接窒素原子によってホウ素中心の空軌道に非共有電子対が供与されるため、ルイス酸性・反応性がかなり低くなっている。
  • MIDAエステル:別項を参照。空軌道が存在しないので、各種酸化条件・酸性条件・還元条件に耐性を持つ。カラム精製も可能。調製過程にDMSO溶液での加熱脱水・溶媒流去が必要で、手順がやや面倒なのが欠点。
  • トリフルオロボレート塩:別項を参照。高い結晶性を持つ。電子求引性のフッ素原子が置換し、空軌道が存在しないので酸化条件に対して特に耐性を持つ。有機溶媒への溶解性が低い。

他にも、カテコールエステル(cat)、ネオペンチルグリコールエステル(neo)、より加水分解耐性を増したピナンジオールエステル、ビスシクロヘキシルジオールエステル、酸化条件で脱保護可能なMPMPエステル、トリフルオロボレート塩の欠点を改良した環状トリオールボレート塩などが候補として知られている。

基本文献

<Review>
<diaminonaphthalene>
  • Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. DOI: 10.1021/ja067975p
<MPMP diol ester>
<MIDA boronate>
<trifluoroborate>
  • Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. DOI: 10.1021/jo00115a016
  • Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288. DOI: 10.1021/cr0509758
<cyclic triolborate>
  • Yamamoto, Y.; Takizawa, M.; Yu, X.-Q,; Miyaura, N. Angew. Chem. Int. Ed. 2008, 47, 928. DOI: 10.1002/anie.200704162

脱保護条件

ピナコールエステルの脱保護条件[1]: 安定さを反映して一般に加水分解は困難であり、多くは酸性・加熱条件下に行なう必要がある。生成するピナコールを過ヨウ素酸ナトリウムで分解したり、フェニルボロン酸で捕捉する方法が良く採られる。一旦トリフルオロボレートやアミノエステル型ボレートを経由する方法は、比較的穏和な脱保護法となる。

boronate_pg_2

dan基の脱保護[2]:脱保護後のジアミノナフタレンは酸性分液操作で簡便に除去できる。

boronate_pg_3

MIDAエステルの脱保護[3]:塩基性水溶液条件にて簡便に脱保護が行える。他の条件に対してMIDAエステルは概ね安定である。

boronate_pg_4

ボロン酸保護体の相互変換[4]

boronate_pg_5

実験のコツ・テクニック

  • ボロン酸ピナコールエステルを精製する際には、ホウ酸を混ぜたシリカゲルカラムが有効との報告[5]がある。
  • 除去されるピナコールの捕捉には、ポリマー担持型ボロン酸を共存させておくのも一つ。

参考文献

  1. (a, b) Coutts, S. J.; Adams, J.; Krolikowski, D.; Show, R. J. Tetrahedron Lett. 1994, 35, 5109. doi:10.1016/S0040-4039(00)77040-7 (c) Sun, J.; Perfetti, J. S.; Santos, W. L. J. Org. Chem. 2011, 76, 3571. DOI: 10.1021/jo200250y (d) Yuen, A. K. L.; Hutton, C. A. Tetrahedron Lett. 2005, 46, 7899. doi:10.1016/j.tetlet.2005.09.101
  2. Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. DOI: 10.1021/ja067975p
  3. Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716. DOI: 10.1021/ja0716204
  4. Churches, Q. I.; Hooper, J. F.; Hutton, C. A. J. Org. Chem. 2015, 80, 5428. DOI: 10.1021/acs.joc.5b00182
  5. Hitosugi, S.; Tanimoto, D.; Nakanishi, W.; Isobe, H. Chem. Lett. 2012, 41, 972. doi:10.1246/cl.2012.972

関連書籍

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ボーディペプチド合成 Bode Peptide Synthesi…
  2. マルコフニコフ則 Markovnikov’s Rul…
  3. コーンブルム ニトロ化反応 Kornblum Nitoratio…
  4. ウルマンカップリング Ullmann Coupling
  5. ペタシス・フェリエ転位 Petasis-Ferrier Rear…
  6. 細見・櫻井アリル化反応 Hosomi-Sakurai Allyl…
  7. 植村酸化 Uemura Oxidation
  8. ノッシェル・ハウザー塩基 Knochel-Hauser Base…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「ラブ・ケミストリー」の著者にインタビューしました。
  2. ピニック(クラウス)酸化 Pinnick(Kraus) Oxidation
  3. ゲオスミン(geosmin)
  4. 有機合成のための遷移金属触媒反応
  5. アミロイド線維を触媒に応用する
  6. 研究者へのインタビュー
  7. スケールアップ実験スピードアップ化と経済性計算【終了】
  8. 亜鉛クロロフィル zinc chlorophyll
  9. シラフィン silaffin
  10. 科学技術教育協会 「大学化合物プロジェクト」が第2期へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年4月
« 3月   5月 »
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

第159回―「世界最大の自己組織化分子を作り上げる」佐藤宗太 特任教授

第159回の海外化学者インタビューは日本から、佐藤宗太 特任教授です。東京大学工学部応用化学科に所属…

π-アリルイリジウムに新たな光を

可視光照射下でのイリジウム触媒によるアリルアルコールの不斉アリル位アルキル化が開発されたキラルな…

うっかりドーピングの化学 -禁止薬物と該当医薬品-

「うっかりドーピング」という言葉をご存知でしょうか。禁止薬物に該当する成分を含む風邪…

第五回ケムステVプレミアレクチャー「キラルブレンステッド酸触媒の開発と新展開」

新型コロナ感染者数は大変なことになっていますが、無観客東京オリンピック盛り上がっ…

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP