[スポンサーリンク]

odos 有機反応データベース

ボロン酸の保護基 Protecting Groups for Boronic Acids

[スポンサーリンク]

概要

ボロン酸は酸素や水に安定で扱いやすく、結晶性も高く固体になりやすい。鈴木カップリングの基質などに有用な化合物である。しかし無保護体は精製がしばしば困難であること、脱水三量化によるボロキシン形成などを経て定量が難しくなること、化合物によっては酸や酸化剤などに不安定であることから、保護された単量体で取り扱うことが多い。

保護基の例

よく使われる保護基は以下の通りである。多くの場合はジオールの環状エステルとして保護する場合が多い。ジオールの立体障害が大きいほど、加水分解に対しては安定になる(逆にジオールの保護目的でボロン酸を使う例も存在する)。モノオール非環状エステルは保護目的ではほとんど用いられない。

boronate_pg_1

  • ピナコールエステル(pin):最もポピュラーな保護基。宮浦ホウ素化ハートウィグホウ素化などでも簡便に調製できる。適度に反応性があり、酸化によってアルコールへと変換し、鈴木カップリングの基質としてそのまま使うことも可能。カラム精製も可能である。反面、かなり安定であるため、加水分解によって無保護ボロン酸や他のボロン酸保護体に導くことはしばしば困難である。
  • ジアミノナフタレンアミド(dan):各種条件に対して非常に耐性のある保護基。隣接窒素原子によってホウ素中心の空軌道に非共有電子対が供与されるため、ルイス酸性・反応性がかなり低くなっている。
  • MIDAエステル:別項を参照。空軌道が存在しないので、各種酸化条件・酸性条件・還元条件に耐性を持つ。カラム精製も可能。調製過程にDMSO溶液での加熱脱水・溶媒流去が必要で、手順がやや面倒なのが欠点。
  • トリフルオロボレート塩:別項を参照。高い結晶性を持つ。電子求引性のフッ素原子が置換し、空軌道が存在しないので酸化条件に対して特に耐性を持つ。有機溶媒への溶解性が低い。

他にも、カテコールエステル(cat)、ネオペンチルグリコールエステル(neo)、より加水分解耐性を増したピナンジオールエステル、ビスシクロヘキシルジオールエステル、酸化条件で脱保護可能なMPMPエステル、トリフルオロボレート塩の欠点を改良した環状トリオールボレート塩などが候補として知られている。

基本文献

<Review>
<diaminonaphthalene>
  • Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. DOI: 10.1021/ja067975p
<MPMP diol ester>
<MIDA boronate>
<trifluoroborate>
  • Vedejs, E.; Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem. 1995, 60, 3020. DOI: 10.1021/jo00115a016
  • Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288. DOI: 10.1021/cr0509758
<cyclic triolborate>
  • Yamamoto, Y.; Takizawa, M.; Yu, X.-Q,; Miyaura, N. Angew. Chem. Int. Ed. 2008, 47, 928. DOI: 10.1002/anie.200704162

脱保護条件

ピナコールエステルの脱保護条件[1]: 安定さを反映して一般に加水分解は困難であり、多くは酸性・加熱条件下に行なう必要がある。生成するピナコールを過ヨウ素酸ナトリウムで分解したり、フェニルボロン酸で捕捉する方法が良く採られる。一旦トリフルオロボレートやアミノエステル型ボレートを経由する方法は、比較的穏和な脱保護法となる。

boronate_pg_2

dan基の脱保護[2]:脱保護後のジアミノナフタレンは酸性分液操作で簡便に除去できる。

boronate_pg_3

MIDAエステルの脱保護[3]:塩基性水溶液条件にて簡便に脱保護が行える。他の条件に対してMIDAエステルは概ね安定である。

boronate_pg_4

ボロン酸保護体の相互変換[4]

boronate_pg_5

実験のコツ・テクニック

  • ボロン酸ピナコールエステルを精製する際には、ホウ酸を混ぜたシリカゲルカラムが有効との報告[5]がある。
  • 除去されるピナコールの捕捉には、ポリマー担持型ボロン酸を共存させておくのも一つ。

参考文献

  1. (a, b) Coutts, S. J.; Adams, J.; Krolikowski, D.; Show, R. J. Tetrahedron Lett. 1994, 35, 5109. doi:10.1016/S0040-4039(00)77040-7 (c) Sun, J.; Perfetti, J. S.; Santos, W. L. J. Org. Chem. 2011, 76, 3571. DOI: 10.1021/jo200250y (d) Yuen, A. K. L.; Hutton, C. A. Tetrahedron Lett. 2005, 46, 7899. doi:10.1016/j.tetlet.2005.09.101
  2. Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758. DOI: 10.1021/ja067975p
  3. Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716. DOI: 10.1021/ja0716204
  4. Churches, Q. I.; Hooper, J. F.; Hutton, C. A. J. Org. Chem. 2015, 80, 5428. DOI: 10.1021/acs.joc.5b00182
  5. Hitosugi, S.; Tanimoto, D.; Nakanishi, W.; Isobe, H. Chem. Lett. 2012, 41, 972. doi:10.1246/cl.2012.972

関連書籍

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ヒンスバーグ チオフェン合成 Hinsberg Thiophen…
  2. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 H…
  3. エピスルフィド合成 Episulfide Synthesis
  4. 芳香環のハロゲン化 Halogenation of Aromat…
  5. 9-フルオレニルメチルオキシカルボニル保護基 Fmoc Prot…
  6. [2+2]光環化反応 [2+2] Photocyclizatio…
  7. スワーン酸化 Swern Oxidation
  8. フォン・リヒター反応 von Richter Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)
  2. ライオン、フッ素の虫歯予防効果を高める新成分を発見
  3. 防カビ効果、長持ちします 住友化学が新プラスチック
  4. 電気刺激により電子伝導性と白色発光を発現するヨウ素内包カーボンナノリング
  5. 服用で意識不明6件、抗生剤に厚労省が注意呼びかけ
  6. 第13回 化学を楽しみ、創薬に挑み続ける ―Derek Lowe博士
  7. ベン・フェリンガ Ben L. Feringa
  8. 計算化学記事まとめ
  9. “関節技”でグリコシル化を極める!
  10. 小さなフッ素をどうつまむのか

関連商品

注目情報

注目情報

最新記事

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

コロナウイルスが免疫システムから逃れる方法(1)

新型コロナウイルスによる感染症が、世界中で猛威を振るっています。この記事を書いている私も、大学の閉鎖…

換気しても、室内の化学物質は出ていかないらしい。だからといって、健康被害はまた別の話!

Human health is affected by indoor air quality. On…

Chem-Station Twitter

PAGE TOP