[スポンサーリンク]

一般的な話題

ユニークな名前を持つ配位子


機能性金属錯体にとって不可欠たる要素の一つに、「配位子(リガンド)」があります。

これは金属元素にくっつき(配位し)、その性質・機能を実に千差万別なものへと変えてしまえる化合物です。特に精密たる機能チューニングを行うには、配位子のチューニングが必要不可欠となります。金属それ自体の修飾場所・修飾手法は限られているため、有機化合物で出来た配位子を様々に変えてやる必要があるからです。

さて、性能の良い配位子には特別な通称がつけられ、化学者の間で共有されてゆきます。多くの場合化合物名(IUPAC名)の略称、もしくは開発者人名から取った通称が付けられるのが通例ですが、中には配位子デザインの「コンセプト」や、配位子がもたらす未来像、すなわち「夢」を託した名前を持つものがあります。

そんなオリジナリティに富む名前を持つ配位子とその由来を知ることは、現場にいる化学者たちの思想が垣間見えてなかなか興味深いものです。今回はそういうものをご紹介しましょう。

TunePHOS(チュンフォス) [1]

tunephos.gifXumu Zhang (Ratgers大学) らによって開発されたキラルリン配位子です。

上図を見ての通り、様々な長さを持つ「アルキルひも」で背中の酸素原子同士が結ばれた形をとっています。この「ひも」の長さを長くしてやると、それに伴って金属を挟む角度(配位挟角; bite angle)が大きくなる仕組みになっています。つまり「配位挟角が調節可能(“tunable” bite angle)」な配位子であり、TunePHOSという名前はそこからつけられています。

このBite Angleというパラメータは、なかなかにバカに出来ません。これがわずかに数度違うだけで、触媒回転数・不斉識別能などの触媒性能がケタ違いになることも珍しくないのです。

どれほどの大きさのBite Angleを持つ配位子に、どんな金属を組み合わせれば、優れた触媒になるのだろうか?――これは反応形式や金属触媒によって大きく異なり、実際試してみるまで分からない、というのが現実です。それゆえBite Angleを自分好みに調節し、反応に応じて使い分けができるコンセプトは、大変重宝されうる考え方になるわけです。

 

SEGPHOS(セグフォス) [2]

2016-01-19_14-39-33

高砂香料工業によって開発されたキラルリン配位子です。
ノーベル賞不斉配位子・BINAP(バイナップ)と似ていますが、反応によってはBINAPよりずっと良い性能を示します。
2016-01-19_14-40-29

このSEGPHOSという名前は、SEaGull(カモメ)+PHOSphine(リン)にちなんでいるそうです。

なぜ”カモメ”なのか?SEGPHOS命名の逸話については有機化学美術館さんに詳しい記事がありますので、そちらも参照くださると有り難いのですが、かの有名な短編小説「かもめのジョナサン」にはこんな一文があります。

―『もっとも高く飛ぶカモメが、 もっとも遠くを見通せるのだ』―

BINAPを超えるほど高性能を誇る配位子こそが、新たな領域を見通す力を持つ――そういう”化学者の夢”を託してつけられた名前の一つだといえそうです。

ちなみにSEGPHOS誘導体の一つであるDTBM-SEGPHOSという不斉配位子は、活性金属中心を覆ってしまえるほどの嵩高い置換基(di-t-butylmethoxyphenyl;DTBM基)を持っています。このため立体識別能が高く、なおかつ金属触媒活性低減の一因となりうる「多量体形成」を阻害する効能も併せ持ちます。BINAP・SEGPHOSで全く収率・選択性の出ない反応形式であっても、DTBM-SEGPHOSを使えばあっさりクリアできてしまうことすらあります。

しかし同様の設計思想に基づくDTBM-BINAPという配位子は、筆者の知る限り合成例がありません(参考)。おそらく多くの人がターゲットにしていたはずですが、何らかの理由で合成がとても難しいのでしょう。・・・ややマニアックなポイントながら、「誘導体化の柔軟性」という観点でもSEGPHOS骨格にはメリットがあるのでしょうね。

 

TRAP(トラップ)[3]

TRAP.gif一昔前に開発された配位子ですが、これは過去にほとんど例のなかった「トランス型キレート配位」を実現せしめた不斉配位子です。そのTRAns-chelating chiral diPhosphine ligand を略して「TRAP」と名づけられたようです。

金属をがっちりと捕捉(トラップ)しそうな形と機能が、なんとも名前にマッチしています。こういうネーミングセンスは素晴らしい。

ちなみに筆者自身、院生時代にこの配位子をごりごり作った経験があり、そういう意味でも印象強い配位子の一つだったりします。複雑に見えて、合成法自体は実はそこまで難しくないのです。市販されてないので知名度は低めですが、オリジナリティ高い日本産配位子の一つだと思えます。

 

SMAP(スマップ)[4]

2016-01-19_14-43-16

ごく最近開発された新しい単座リン配位子です。トリメチルホスフィンなどと酷似した「コンパクトな配位環境」を持ちながらも、いくつかの反応形式において、より優れたパフォーマンスを示します。

Silicon-constrained Monodentate AlkylPhosphine を略したもののようですが、こちらは失礼ながら、まったく無理やりな名前にしか見えません。しかし、その略称自体はインパクト満点です・・・それがなぜかは、日本の皆さんであればお分かりですよね!

この名前がでかでかと載った論文を見たとき、「ぜってー狙いまくってるよなコレわ・・・」などとラボのみんなでわいわいがやがや言ってたものです。少なくとも日本人に容易に浸透しうる名前、というのは間違いなさそう。とはいえ余計な背景理解が無くとも、単純に呼び易くて良い名前だとは思います。気の利いた名前が化学界での市民権確保に一役買っているというのは、この例だけからも分かると言うものですね。

TRAPとはまた違った意味で凄いネーミングセンスですが、SMAPの開発者たる澤村正也先生(北大・理学部)  は、実はTRAP合成論文の1st Authorでもあるという・・・なるほど一朝一夕の積み重ねで出てくるセンスではないということか!まったくもって奥が深い世界ですね(笑)

 

関連文献

  1.  Zhang, Z.; Qian, Hu; Longmire, J.; Zhang, X. J. Org. Chem. 2000, 65, 6223. doi:10.1021/jo000462v
  2. Shimizu, H. et al. Acc. Chem. Res. 2007, 40, 1385.
  3. (a) Sawamura, M.; Hamashima, H.; Ito, Y. Tetrahedron: Asymmetry 1991, 2, 593. doi:10.1016/S0957-4166(00)86110-8 (b) Ito, Y. et al. Bull. Chem. Soc. Jpn. 1997, 70, 2807.
  4. (a) Sawamura, M. et al. Org. Lett. 2003, 5, 2672. doi:10.1021/ol0349099 (b) Sawamura, M. et al. Organometallics 2008, 27, 5494. doi:10.1021/om8005728

 

関連書籍

 

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 大環状ヘテロ環の合成から抗がん剤開発へ
  2. 「優れた研究テーマ」はどう選ぶべき?
  3. 3.11 14:46 ②
  4. 小説『ラブ・ケミストリー』聖地巡礼してきた
  5. 2016 SciFinder Future Leadersプログ…
  6. 2017年始めに100年前を振り返ってみた
  7. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  8. 鉄錯体による触媒的窒素固定のおはなし-2

コメント

  1. 日本人の命名センスもなかなか上がって来てるな。 面白味も何もないのもまだ多いけど。

  2. >「かもめのジョナサン」にはこんな一文があります。 ―『もっとも高く飛ぶカモメが、 もっとも遠くを見通せるのだ』

  3. 略称は覚えやすいが^^; コメント「実はSMAPは最初、SMAll Phosphineの略で通そうと思ったらさすがに却下され、Silicon-constrained Monodentate AlkylPhosphine にしたそうです。どちらにせよ無理やり過ぎw 」全くだw

  4. 最後のオチがwwwwwwwwwww

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 4,4,5,5-テトラメチル-1,3,2-ジオキサホスホラン2-オキシド : 4,4,5,5-Tetramethyl-1,3,2-dioxaphospholane 2-Oxide
  2. 信越化学、日欧でセルロース増産投資・建材向け堅調
  3. 反応中間体の追跡から新反応をみつける
  4. アンドレアス ファルツ Andreas Pfaltz
  5. ジュリア・コシエンスキー オレフィン合成 Julia-Kocienski Olefination
  6. A-ファクター A-factor
  7. テストには書けない? カルボキシル化反応の話
  8. はしか流行?
  9. 堀場氏、分析化学の”殿堂”入り
  10. 元素周期 萌えて覚える化学の基本

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

シアノスター Cyanostar

シアノスター  (Cyanostar)は、tert-butylbenzeneとacrylonitri…

スルホニルアミノ酸を含むペプチドフォルダマーの創製

南フロリダ大学・Jianfeng Caiらのグループは、L-アミノ酸とD-sulfono-γ-AAp…

布施 新一郎 Shinichiro Fuse

布施 新一郎 (ふせ しんいちろう、1977年12月27日-)は、日本の有機化学者である。東京工業大…

ニッケル触媒による縮合三環式化合物の迅速不斉合成

第108回のスポットライトリサーチは、大阪大学大学院工学研究科生越研究室PDのRavindra Ku…

トーマス・ホイ Thomas R. Hoye

トーマス・R・ホイ (Thomas R. Hoye、19xx年xx月xx日-)は、アメリカの有機化学…

Lindau Nobel Laureate Meeting 動画集のご紹介

Tshozoです。タイトルの件、"ヨーロッパリベンジ"の動画を見ながらWeb探索を夜な夜な続けており…

Chem-Station Twitter

PAGE TOP