[スポンサーリンク]

ケムステニュース

リサイクルが容易な新しいプラスチックを研究者が開発

[スポンサーリンク]

プラスチックは、リサイクルすると不純物が残ったりポリマー(重合体)の特性が劣化したりします。こうした問題を改善するため、研究者が新たにリサイクルが容易な「次世代プラスチック」を開発しました。 (引用:Gigazine4月27日)

マイクロプラスチックの問題が叫ばれ、プラスチック製品を削減する動きが加速している中、容易に”リサイクル”できる材料が開発されました。

この研究は、ローレンス・バークレー国立研究所、マテリアルサイエンス部門のBrett A. Helms博士らのチームによる成果です。この研究チームでは、機能性ポリマーやマイクロ、メソ構造体の開発を通してエネルギー、サステナビリティ、水、食料の問題の改善に取り組んでいるようです。

現状、プラスチックを解重合してリサイクルする方法は、不純物の混入や、リサイクル後にポリマーの性質が変わってしまうなどの品質的な問題や解重合するのに大がかりな装置が必要であるコストの問題があります。そのためアルミや鉄と比べてプラスチックのリサイクルは、クローズドループリサイクル(材料の持つ本来の性質を保ったまま同じ材料製品の原料として無限にリサイクル)の割合が低いのが課題となっています。そこでこの研究では、硫酸によって解重合できるモノマーの開発を行いました。

着目したのは、ß-triketonesとAminesの脱水反応によるDiketoenamine結合の形成です。下の図のように芳香族、脂肪族どちらのアミンでも可逆的に反応し、アミン同士の交換も可能である反応を応用しました。同様の研究は他の様々なC=O結合をもつ基質でも多数検討されていますが、リサイクルによって重合前と同じ構造のモノマーを回収できる分子の発見が本研究のカギとなっています。

ポリマーの重合、解重合で使用している反応機構(引用:研究室サイト

具体的に論文中では、TriketonesであるTK-6とTRENを使ってPoly(diketoenamine)、PDK-6(TREN)を合成したことを報告しています。さらにこのPDK-6(TREN)に硫酸を加えて加水分解後、固相は水と炭酸カリウムを加えて溶解され、水と塩酸によって純度の高いTriketonesを析出させることに成功しています。一方の液相は、イオン交換したのちに精製され、TRENを回収しています。このプロセスは、他のプラスチックが混じっていても、着色剤が混ざっていても、繊維の中に織り込まれていてもモノマーの回収に成功していて、ポリマーを選別しなくてもリサイクルできることを実証しています。さらに、リサイクルではないモノマーとリサイクルしたモノマーを比較して同等の熱物性を示すことも証明されています。アミンに関しては、TRENだけでなく他のアミンも加えることでポリマーの機械的、熱的物性を向上でき、高い応用範囲が示されています。

TriketoneとTRENの反応

冒頭での説明の通りプラスチックをモノマーに戻して再度プラスチックを作る現状の技術には改善の余地があり、大変興味深い研究だと思います。特に、熱をかけずに酸で解重合を行い、液相と固相でそれぞれのモノマーを回収できることは、スケールアップの可能性が容易に可能であると思います。気になる点は、複数のアミンを使ってポリマーを合成した場合に、モノマー回収率とその純度に影響があるのかどうかで、モノマーの処方に関係なくリサイクルできるのであれば応用範囲も広がり商業的にも使いやすくなるのではと思います。

着色した繊維の中からポリマーを取り出す過程と結果(引用:arstechnica)

ところで日本のプラスチックのリサイクル率は、84%と高い数値を出していて「こんな研究は不必要だ」と思うかもしれません。しかしながら、このリサイクルという言葉には、マテリアルリサイクル、ケミカルリサイクル、サーマルリサイクルという三つのリサイクル方法が含まれていて、燃やして発電したりすることもリサイクルとしてカウントしています。また安定供給という観点からマテリアルリサイクルに使われるプラスチックの多くが、産業で排出された廃プラスチックです。さらに、そのマテリアルリサイクルの中でも、同じ製品になるクローズドループリサイクルはペットボトルくらいで、他はカスケードリサイクルと呼ばれる別の性質の劣化・変化を伴うリサイクルとなっています。つまり、各家庭が頑張って分別したプラスチックの多くは、プラスチックに生まれ変わるのではなく、燃やされて電気になっているのが現状のようです。そのため、日本でも使い捨てプラスチックへの対策は必要で、サーマルリサイクルから脱却する必要があると考えられます。しかしながらストローの問題のようにプラスチックからの脱却が不便を伴う場合には、プラスチックのごみを同じ製品に戻すクローズドループリサイクルのほうが合理的であり、本研究のようなクローズドループリサイクルに関する研究は、二酸化炭素の排出を抑える上で重要であると言えます。

リサイクルの種類(引用:プラスチック循環利用協会

2016年廃プラスチックの処理方法(出典:プラスチック循環利用協会)

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 茅幸二、鈴木昭憲、田中郁三ら文化功労者に
  2. 大正製薬、女性用の発毛剤「リアップレディ」を来月発売
  3. 「元素戦略プロジェクト」に関する研究開発課題の募集について
  4. ライオン、男性の体臭の原因物質「アンドロステノン」の解明とその抑…
  5. 花王の多彩な研究成果・研究支援が発表
  6. ノバルティス、後発薬品世界最大手に・米独社を買収
  7. 広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を…
  8. 塩野義 抗インフルエンザ薬製造・販売の承認を取得

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アセチレン、常温で圧縮成功
  2. NMRの化学シフト値予測の実力はいかに
  3. フェルキン・アーン モデル Felkin-Anh Model
  4. 2013年ケムステ人気記事ランキング
  5. 米国、カナダにおけるシェール・ガスによるLNGプロジェクトの事業機会【終了】
  6. ポンコツ博士の海外奮闘録 ケムステ異色連載記
  7. 快適な研究環境を!実験イス試してみた
  8. これからの研究開発状況下を生き抜くための3つの資質
  9. タミフル―米国―厚労省 疑惑のトライアングル
  10. 交互に配列制御された高分子合成法の開発と機能開拓

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

2022年ノーベル化学賞ケムステ予想当選者発表!

2022ノーベル化学賞が発表されました。「クリックケミストリ…

マテリアルズ・インフォマティクスにおけるデータの前処理-データ整理・把握や化学構造のSMILES変換のやり方を解説-

開催日:2022/10/12 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

【いまさら聞けない?】アジドの取扱いを学んでおこう!

今年のノーベル化学賞とも深く関連する、アジド化合物。受賞対象となったクリックケミストリーに加えて、ア…

【技術系スタートアップ合同フォーラムのお知らせ】 ディープテックのリアル-業界ならでは魅力と社会課題解決への想い

ディープテックに関心がある方、スタートアップへのジョインに興味のある方、スタート…

【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!

2022年のノーベル化学賞は「クリックケミストリーと生体直交化学」の開発業績で、バリー・シャープレス…

in-situ放射光X線小角散実験から明らかにする牛乳のナノサイエンス

第425回のスポットライトリサーチは、高エネルギー加速器研究機構 物質構造科学研究所(物構研)の高木…

アセトアミノフェン Acetaminophen

 アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタ…

不安定な高分子原料を従来に比べて 50 倍安定化することに成功! ~水中での化学反応・材料合成に利用可能、有機溶媒の大幅削減による脱炭素に貢献~

第424回のスポットライトリサーチは、京都工芸繊維大学大学院工芸科学研究科 バイオベースマテリアル学…

【10月開催】マイクロ波化学ウェブセミナー

<内容>今月もテーマを分けて2回開催いたします。第一…

越野 広雪 Hiroyuki Koshino

越野 広雪(こしの ひろゆき)は、NMRやマススペクトルなどのもとにした有機分子の構造解析を専門とす…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP