[スポンサーリンク]

ケムステニュース

リサイクルが容易な新しいプラスチックを研究者が開発

[スポンサーリンク]

プラスチックは、リサイクルすると不純物が残ったりポリマー(重合体)の特性が劣化したりします。こうした問題を改善するため、研究者が新たにリサイクルが容易な「次世代プラスチック」を開発しました。 (引用:Gigazine4月27日)

マイクロプラスチックの問題が叫ばれ、プラスチック製品を削減する動きが加速している中、容易に”リサイクル”できる材料が開発されました。

この研究は、ローレンス・バークレー国立研究所、マテリアルサイエンス部門のBrett A. Helms博士らのチームによる成果です。この研究チームでは、機能性ポリマーやマイクロ、メソ構造体の開発を通してエネルギー、サステナビリティ、水、食料の問題の改善に取り組んでいるようです。

現状、プラスチックを解重合してリサイクルする方法は、不純物の混入や、リサイクル後にポリマーの性質が変わってしまうなどの品質的な問題や解重合するのに大がかりな装置が必要であるコストの問題があります。そのためアルミや鉄と比べてプラスチックのリサイクルは、クローズドループリサイクル(材料の持つ本来の性質を保ったまま同じ材料製品の原料として無限にリサイクル)の割合が低いのが課題となっています。そこでこの研究では、硫酸によって解重合できるモノマーの開発を行いました。

着目したのは、ß-triketonesとAminesの脱水反応によるDiketoenamine結合の形成です。下の図のように芳香族、脂肪族どちらのアミンでも可逆的に反応し、アミン同士の交換も可能である反応を応用しました。同様の研究は他の様々なC=O結合をもつ基質でも多数検討されていますが、リサイクルによって重合前と同じ構造のモノマーを回収できる分子の発見が本研究のカギとなっています。

ポリマーの重合、解重合で使用している反応機構(引用:研究室サイト

具体的に論文中では、TriketonesであるTK-6とTRENを使ってPoly(diketoenamine)、PDK-6(TREN)を合成したことを報告しています。さらにこのPDK-6(TREN)に硫酸を加えて加水分解後、固相は水と炭酸カリウムを加えて溶解され、水と塩酸によって純度の高いTriketonesを析出させることに成功しています。一方の液相は、イオン交換したのちに精製され、TRENを回収しています。このプロセスは、他のプラスチックが混じっていても、着色剤が混ざっていても、繊維の中に織り込まれていてもモノマーの回収に成功していて、ポリマーを選別しなくてもリサイクルできることを実証しています。さらに、リサイクルではないモノマーとリサイクルしたモノマーを比較して同等の熱物性を示すことも証明されています。アミンに関しては、TRENだけでなく他のアミンも加えることでポリマーの機械的、熱的物性を向上でき、高い応用範囲が示されています。

TriketoneとTRENの反応

冒頭での説明の通りプラスチックをモノマーに戻して再度プラスチックを作る現状の技術には改善の余地があり、大変興味深い研究だと思います。特に、熱をかけずに酸で解重合を行い、液相と固相でそれぞれのモノマーを回収できることは、スケールアップの可能性が容易に可能であると思います。気になる点は、複数のアミンを使ってポリマーを合成した場合に、モノマー回収率とその純度に影響があるのかどうかで、モノマーの処方に関係なくリサイクルできるのであれば応用範囲も広がり商業的にも使いやすくなるのではと思います。

着色した繊維の中からポリマーを取り出す過程と結果(引用:arstechnica)

ところで日本のプラスチックのリサイクル率は、84%と高い数値を出していて「こんな研究は不必要だ」と思うかもしれません。しかしながら、このリサイクルという言葉には、マテリアルリサイクル、ケミカルリサイクル、サーマルリサイクルという三つのリサイクル方法が含まれていて、燃やして発電したりすることもリサイクルとしてカウントしています。また安定供給という観点からマテリアルリサイクルに使われるプラスチックの多くが、産業で排出された廃プラスチックです。さらに、そのマテリアルリサイクルの中でも、同じ製品になるクローズドループリサイクルはペットボトルくらいで、他はカスケードリサイクルと呼ばれる別の性質の劣化・変化を伴うリサイクルとなっています。つまり、各家庭が頑張って分別したプラスチックの多くは、プラスチックに生まれ変わるのではなく、燃やされて電気になっているのが現状のようです。そのため、日本でも使い捨てプラスチックへの対策は必要で、サーマルリサイクルから脱却する必要があると考えられます。しかしながらストローの問題のようにプラスチックからの脱却が不便を伴う場合には、プラスチックのごみを同じ製品に戻すクローズドループリサイクルのほうが合理的であり、本研究のようなクローズドループリサイクルに関する研究は、二酸化炭素の排出を抑える上で重要であると言えます。

リサイクルの種類(引用:プラスチック循環利用協会

2016年廃プラスチックの処理方法(出典:プラスチック循環利用協会)

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 小6、危険物取扱者乙種全類に合格 「中学で理科実験楽しみ」
  2. 【インドCLIP】製薬3社 抗エイズ薬後発品で米から認可
  3. 化学物質研究機構、プロテオーム解析用超高感度カラム開発
  4. 第32回 BMSコンファレンス(BMS2005)
  5. 夏:今年もスズメバチ防護服の製造ピーク
  6. 米メルク、業績低迷長期化へ
  7. 特許の関係を「地図」に ベンチャー企業が作成
  8. 化学グランプリ 参加者を募集

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 農薬DDTが大好きな蜂
  2. 第三回 ナノレベルのものづくり研究 – James Tour教授
  3. とにかく見やすい!論文チェックアプリの新定番『Researcher』
  4. アンソニー・アルジュンゴ Anthony J. Arduengo, III
  5. 定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功
  6. 【第11回Vシンポ特別企画】講師紹介③:大内 誠 先生
  7. 【書籍】フロンティア軌道論で理解する有機化学
  8. ボニー・L.・バスラー Bonnie L. Bassler bassler
  9. 山本嘉則 Yoshinori Yamamoto
  10. 第54回―「ナノカーボンを機能化する合成化学」Maurizio Prato教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/06/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

N-オキシドの性質と創薬における活用

N-オキシドは一部の天然物に含まれ、食品・医薬品などの代謝物にも見られるほか、医…

未来を切り拓く創薬DX:多角的な視点から探る最新トレンド

申込みはこちら次世代の創薬研究をリードするために、デジタルトランスフォーメーション(DX…

ファラデーのつくった世界!:−ロウソクの科学が歴史を変えた

こんにちは、Spectol21です!ノーベル賞受賞の吉野彰先生が、吉野先生の研究者と…

接着系材料におけるmiHub活用事例とCSサポートのご紹介

開催日:2024/06/12 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

水素原子一個で強力な触媒をケージング ――アルツハイマー病関連のアミロイドを低分子で副作用を抑えて分解する――

第 619 回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学…

ミツバチに付くダニに効く化学物質の研究開発のはなし

今回は東京大学大学院有機化学研究室 滝川 浩郷先生、小倉 由資先生が主導されている研究内容につき…

化学結合の常識が変わる可能性!形成や切断よりも「回転」プロセスが実は難しい有機反応

第 617 回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 有機…

【書評】元素楽章ー擬人化でわかる元素の世界

元素の特性に基づくキャラクターデザインとフィクションの要素を融合させ,物語にまで昇華させた,待望…

デルゴシチニブ(Delgocitinib)のはなし 日本発の非ステロイド系消炎外用薬について

Tshozoです。 小さいころ法事などの集まりで爺様方が集まってやれ体の不調だの通院だのと盛…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP