[スポンサーリンク]

化学者のつぶやき

カーボンナノベルト合成初成功の舞台裏 (3) 完結編

[スポンサーリンク]

前前回 カーボンナノベルト合成初成功の舞台裏 (1) 、前回 カーボンナノベルト合成初成功の舞台裏 (2) の続きです。

前回、カーボンナノベルト前駆体の具体的な合成方法を紹介し、実際に多段階反応により環状化合物2(カーボンナノベルト前駆体)を得ています。(この環状化合物2の大量生産に関しては、合成方法確立の後にERATO経由で研究者が招集されて行われました。こういった事もERATOプロジェクトの特色の1つです。普通は化学系の学位を持った研究者が集められて行われており、効率に関してはまるで会社のようです)

Guillaume氏は、カーボンナベルト1を得るために前駆体2に対し、Naナフタレニド、Rieke Mg、Stille-Kelly反応、Ullmannカップリングなど、その他高圧水銀ランプ照射やフリーラジカル条件など多くの手法を試しましたが、良い結果は得られませんでした。

Ni触媒によるYamamotoカップリング反応で、ホスフィン配位子やビピリジン配位子などを用いた場合でも、その触媒効果は不十分でMALDI分子量検出できる程度であり、C-Br結合をすべて C-C結合にすることは困難でした。最終的には、反応温度を上昇させ、2当量の[Ni(cod)(bpy)] (cod: 1,5-cyclooctadiene, bpy: 2,2′-bipyridine)を添加することによってやっと1%程度の生成物1を得ることが出来ました。 これほど少量な化合物の分離に成功したこと、私は本当にGuillaume氏の洗練された手腕に感心します。

炭化水素1は、下図における7.52および8.27(それぞれH1, H2)に対称なピークを有します。(具体的な帰属のための計算は実際に論文を読んでみて下さい)HMQC(Heteronuclear Multiple Quantum Correlation)という、直接結合している水素と炭素を調べることが出来る方法に加えて、HMBC(Heteronuclear Multiple Bond Coherence)という、数結合離れている水素と炭素を調べることが出来る方法を使用し、C1、C4、C2、C3とH1、H2がそれぞれ図のように帰属されます。

当然ながら、NMRによって化合物1の構造が確かめられた後は、最も直接的な観測のために単結晶を用いてX線結晶構造解析を行います。実際、昨年の9月にカーボンナノベルト単結晶は得られたので、より一歩進んだ構造解析や、その他多くの物理化学的な性質を解析することになりました。これまでの所で、カーボンナノベルト合成に関する作業は一段落したといったところでしょうか。

その結果は以下の通りです。我々は各C-C結合の長さなどについて、カーボンナノベルト単結晶と[6]-CPPのデータを比較しました。その結果、minor状態における(下図参照)a環が芳香性を有すること、それ以上にmajor状態におけるb環がa環よりも芳香性を有しているということがわかりました。

カーボンナノベルトのベルト垂直方向は、[6]-CPPよりも剛性が高いこともわかりました。[6]-CPPのベンゼン環は一定のゆがみを有しておりその結果ベンゼン環が内側に向いてしまっているのに対して、カーボンナノベルトはより1に近い半径比であることがわかりました。すなわち、カーボンナノベルトのほうが[6]-CPPよりも一般的な”リング”に近いということです。それは、カーボンナノベルトの方が、よりカーボンナノチューブに似た結合をしているとも言えます。

ラマン分光分析の結果からは、カーボンナノベルトのradial breathing modeは268cm-1であり、これは[6]-CPPの値231cm-1よりも(6,6)-CNTの値281cm-1に近いことがわかりました。

その他、カーボンナノベルトの興味深い物理化学的な特徴は、明るい赤色の蛍光と独特の光学的性質です。将来的に光電材料として応用される可能性も秘めていますカーボンナノベルト合成の成功は、カーボンナノチューブの合成がもはや手の届かないものではないということを証明するものであり、それと同時にこういった物理化学的な分野で新たな時代を切り拓くものであると願っています。

さて、昨年9月にこの化合物の単結晶が得られ、カーボンナノベルトの合成に成功したことが確認されました。実験室全体が興奮した瞬間の映像をご覧ください(中国ではみれませんでした)。

私はこの映像をQQディスカッショングループに送った時のことを覚えています。皆、伊丹研究室の情熱的な雰囲気を感じているようでした。 ある人は「もし自分の人生が、素晴らしい仕事のために、そして恩師に拍手を送るためにあったのだとしたら、それはきっと悔いのない人生なのだろうな」と呟いていました。

伊丹先生がこの瞬間のために皆を集めた理由がわかりました。それは、化学の美しさを感じてもらうとともに、困難な道程の末に辿り着く達成感を味わってもらうためであったのです。そして、こういった仲間の偉大な業績と努力を、これから先の科学研究の原動力にしてもらいたかったのでしょう 。

 

関連リンク

Chem Station 中国語版からの翻訳・加筆記事です。

原文: 首次合成碳纳米带–背后的故事(三)完结篇 by JiaoJiao

Avatar photo

Eine

投稿者の記事一覧

音楽ゲームが好き。ナノメートルの世界で分子や電子の気持ちを考える日々

関連記事

  1. Biotage Selekt のバリュープライス版 Enkel …
  2. 学会会場でiPadを活用する①~手書きの講演ノートを取ろう!~
  3. 【 Web seminar by Microwave Chemi…
  4. 溶媒としてアルコールを検討しました(笑)
  5. 分子レベルでお互いを見分けるゲル
  6. MOF 内の水分子吸着過程の解析とそれに基づく水蒸気捕集技術の向…
  7. CSJジャーナルフォーラム「ジャーナルの将来像を考える」
  8. 【超難問】幻のインドールアルカロイドの全合成【パズル】

注目情報

ピックアップ記事

  1. 4-メルカプト安息香酸:4-Mercaptobenzoic Acid
  2. 【書籍】電気化学インピーダンス 数式と計算で理解する基礎理論
  3. どろどろ血液でもへっちゃら
  4. 化学とウェブのフュージョン
  5. フランシス・アーノルド Frances H. Arnold
  6. メスゴキブリのフェロモン合成、駆除に活用・日米チーム
  7. ビル・モランディ Bill Morandi
  8. 【書籍】新版 元素の小辞典
  9. 香りの化学4
  10. マテリアルズ・インフォマティクスの基礎知識とよくある誤解

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP