[スポンサーリンク]

化学者のつぶやき

カーボンナノベルト合成初成功の舞台裏 (3) 完結編

[スポンサーリンク]

前前回 カーボンナノベルト合成初成功の舞台裏 (1) 、前回 カーボンナノベルト合成初成功の舞台裏 (2) の続きです。

前回、カーボンナノベルト前駆体の具体的な合成方法を紹介し、実際に多段階反応により環状化合物2(カーボンナノベルト前駆体)を得ています。(この環状化合物2の大量生産に関しては、合成方法確立の後にERATO経由で研究者が招集されて行われました。こういった事もERATOプロジェクトの特色の1つです。普通は化学系の学位を持った研究者が集められて行われており、効率に関してはまるで会社のようです)

Guillaume氏は、カーボンナベルト1を得るために前駆体2に対し、Naナフタレニド、Rieke Mg、Stille-Kelly反応、Ullmannカップリングなど、その他高圧水銀ランプ照射やフリーラジカル条件など多くの手法を試しましたが、良い結果は得られませんでした。

Ni触媒によるYamamotoカップリング反応で、ホスフィン配位子やビピリジン配位子などを用いた場合でも、その触媒効果は不十分でMALDI分子量検出できる程度であり、C-Br結合をすべて C-C結合にすることは困難でした。最終的には、反応温度を上昇させ、2当量の[Ni(cod)(bpy)] (cod: 1,5-cyclooctadiene, bpy: 2,2′-bipyridine)を添加することによってやっと1%程度の生成物1を得ることが出来ました。 これほど少量な化合物の分離に成功したこと、私は本当にGuillaume氏の洗練された手腕に感心します。

炭化水素1は、下図における7.52および8.27(それぞれH1, H2)に対称なピークを有します。(具体的な帰属のための計算は実際に論文を読んでみて下さい)HMQC(Heteronuclear Multiple Quantum Correlation)という、直接結合している水素と炭素を調べることが出来る方法に加えて、HMBC(Heteronuclear Multiple Bond Coherence)という、数結合離れている水素と炭素を調べることが出来る方法を使用し、C1、C4、C2、C3とH1、H2がそれぞれ図のように帰属されます。

当然ながら、NMRによって化合物1の構造が確かめられた後は、最も直接的な観測のために単結晶を用いてX線結晶構造解析を行います。実際、昨年の9月にカーボンナノベルト単結晶は得られたので、より一歩進んだ構造解析や、その他多くの物理化学的な性質を解析することになりました。これまでの所で、カーボンナノベルト合成に関する作業は一段落したといったところでしょうか。

その結果は以下の通りです。我々は各C-C結合の長さなどについて、カーボンナノベルト単結晶と[6]-CPPのデータを比較しました。その結果、minor状態における(下図参照)a環が芳香性を有すること、それ以上にmajor状態におけるb環がa環よりも芳香性を有しているということがわかりました。

カーボンナノベルトのベルト垂直方向は、[6]-CPPよりも剛性が高いこともわかりました。[6]-CPPのベンゼン環は一定のゆがみを有しておりその結果ベンゼン環が内側に向いてしまっているのに対して、カーボンナノベルトはより1に近い半径比であることがわかりました。すなわち、カーボンナノベルトのほうが[6]-CPPよりも一般的な”リング”に近いということです。それは、カーボンナノベルトの方が、よりカーボンナノチューブに似た結合をしているとも言えます。

ラマン分光分析の結果からは、カーボンナノベルトのradial breathing modeは268cm-1であり、これは[6]-CPPの値231cm-1よりも(6,6)-CNTの値281cm-1に近いことがわかりました。

その他、カーボンナノベルトの興味深い物理化学的な特徴は、明るい赤色の蛍光と独特の光学的性質です。将来的に光電材料として応用される可能性も秘めていますカーボンナノベルト合成の成功は、カーボンナノチューブの合成がもはや手の届かないものではないということを証明するものであり、それと同時にこういった物理化学的な分野で新たな時代を切り拓くものであると願っています。

さて、昨年9月にこの化合物の単結晶が得られ、カーボンナノベルトの合成に成功したことが確認されました。実験室全体が興奮した瞬間の映像をご覧ください(中国ではみれませんでした)。

私はこの映像をQQディスカッショングループに送った時のことを覚えています。皆、伊丹研究室の情熱的な雰囲気を感じているようでした。 ある人は「もし自分の人生が、素晴らしい仕事のために、そして恩師に拍手を送るためにあったのだとしたら、それはきっと悔いのない人生なのだろうな」と呟いていました。

伊丹先生がこの瞬間のために皆を集めた理由がわかりました。それは、化学の美しさを感じてもらうとともに、困難な道程の末に辿り着く達成感を味わってもらうためであったのです。そして、こういった仲間の偉大な業績と努力を、これから先の科学研究の原動力にしてもらいたかったのでしょう 。

 

関連リンク

Chem Station 中国語版からの翻訳・加筆記事です。

原文: 首次合成碳纳米带–背后的故事(三)完结篇 by JiaoJiao

Eine

Eine

投稿者の記事一覧

音楽ゲームが好き。ナノメートルの世界で分子や電子の気持ちを考える日々

関連記事

  1. ゾル-ゲル変化を自ら繰り返すアメーバのような液体の人工合成
  2. 立体選択的なスピロ環の合成
  3. エナンチオ選択的α-アルキル-γ-ラクタム合成
  4. 二丁拳銃をたずさえ帰ってきた魔弾の射手
  5. ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造…
  6. 生理活性物質? 生物活性物質?
  7. 不斉反応ーChemical Times特集より
  8. 鉄触媒での鈴木-宮浦クロスカップリングが実現!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 合成後期多様化法 Late-Stage Diversification
  2. カクテルにインスパイアされた男性向け避妊法が開発される
  3. ロンドン・サイエンスミュージアム
  4. C60MC12
  5. ティム・スワガー Timothy M. Swager
  6. ラロック インドール合成 Larock Indole Synthesis
  7. 三枝・伊藤酸化 Saegusa-Ito Oxidation
  8. Dead Endを回避せよ!「全合成・極限からの一手」⑤
  9. ジョージ・クラフォード M. George Craford
  10. 有機溶媒吸収し数百倍に 新素材のゲル、九大が開発

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第19回ケムステVシンポ「化学者だって起業するっつーの」を開催します!

少し前に化学者のつぶやきからこのような記事が出ました:【ケムステSlackに訊いて見た④】化学系学生…

10種類のスパチュラを試してみた

大好評、「試してみた」シリーズの第6弾。今回は試薬の秤量にか欠かせない、…

第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授

久々の研究者へのインタビューです。第48回は、立教大学の森本正和先生にお願いいたしました。第17回ケ…

畠山琢次 Takuji Hatakeyama

畠山琢次 (はたけやま たくじ)は、日本の化学者である。専門は有機合成化学,材料化学。2021年現在…

DNA origami入門 ―基礎から学ぶDNAナノ構造体の設計技法―

(さらに…)…

NBSでのブロモ化に、酢酸アンモニウムをひとつまみ

芳香環のブロモ化といえば、構造活性相関の取得はもちろんの事、カップリング反応の足場と…

森本 正和 Masakazu Morimoto

森本 正和(もりもと まさかず、MORIMOTO Masakazu)は、日本の化学者である。専門は有…

「リジェネロン国際学生科学技術フェア(ISEF)」をご存じですか?

近年、中高生向けの科学プログラムやコンテストがいっそうの充実を見せています。未来の化学者育成に少なか…

Chem-Station Twitter

PAGE TOP