[スポンサーリンク]

化学者のつぶやき

カーボンナノベルト合成初成功の舞台裏 (3) 完結編

[スポンサーリンク]

前前回 カーボンナノベルト合成初成功の舞台裏 (1) 、前回 カーボンナノベルト合成初成功の舞台裏 (2) の続きです。

前回、カーボンナノベルト前駆体の具体的な合成方法を紹介し、実際に多段階反応により環状化合物2(カーボンナノベルト前駆体)を得ています。(この環状化合物2の大量生産に関しては、合成方法確立の後にERATO経由で研究者が招集されて行われました。こういった事もERATOプロジェクトの特色の1つです。普通は化学系の学位を持った研究者が集められて行われており、効率に関してはまるで会社のようです)

Guillaume氏は、カーボンナベルト1を得るために前駆体2に対し、Naナフタレニド、Rieke Mg、Stille-Kelly反応、Ullmannカップリングなど、その他高圧水銀ランプ照射やフリーラジカル条件など多くの手法を試しましたが、良い結果は得られませんでした。

Ni触媒によるYamamotoカップリング反応で、ホスフィン配位子やビピリジン配位子などを用いた場合でも、その触媒効果は不十分でMALDI分子量検出できる程度であり、C-Br結合をすべて C-C結合にすることは困難でした。最終的には、反応温度を上昇させ、2当量の[Ni(cod)(bpy)] (cod: 1,5-cyclooctadiene, bpy: 2,2′-bipyridine)を添加することによってやっと1%程度の生成物1を得ることが出来ました。 これほど少量な化合物の分離に成功したこと、私は本当にGuillaume氏の洗練された手腕に感心します。

炭化水素1は、下図における7.52および8.27(それぞれH1, H2)に対称なピークを有します。(具体的な帰属のための計算は実際に論文を読んでみて下さい)HMQC(Heteronuclear Multiple Quantum Correlation)という、直接結合している水素と炭素を調べることが出来る方法に加えて、HMBC(Heteronuclear Multiple Bond Coherence)という、数結合離れている水素と炭素を調べることが出来る方法を使用し、C1、C4、C2、C3とH1、H2がそれぞれ図のように帰属されます。

当然ながら、NMRによって化合物1の構造が確かめられた後は、最も直接的な観測のために単結晶を用いてX線結晶構造解析を行います。実際、昨年の9月にカーボンナノベルト単結晶は得られたので、より一歩進んだ構造解析や、その他多くの物理化学的な性質を解析することになりました。これまでの所で、カーボンナノベルト合成に関する作業は一段落したといったところでしょうか。

その結果は以下の通りです。我々は各C-C結合の長さなどについて、カーボンナノベルト単結晶と[6]-CPPのデータを比較しました。その結果、minor状態における(下図参照)a環が芳香性を有すること、それ以上にmajor状態におけるb環がa環よりも芳香性を有しているということがわかりました。

カーボンナノベルトのベルト垂直方向は、[6]-CPPよりも剛性が高いこともわかりました。[6]-CPPのベンゼン環は一定のゆがみを有しておりその結果ベンゼン環が内側に向いてしまっているのに対して、カーボンナノベルトはより1に近い半径比であることがわかりました。すなわち、カーボンナノベルトのほうが[6]-CPPよりも一般的な”リング”に近いということです。それは、カーボンナノベルトの方が、よりカーボンナノチューブに似た結合をしているとも言えます。

ラマン分光分析の結果からは、カーボンナノベルトのradial breathing modeは268cm-1であり、これは[6]-CPPの値231cm-1よりも(6,6)-CNTの値281cm-1に近いことがわかりました。

その他、カーボンナノベルトの興味深い物理化学的な特徴は、明るい赤色の蛍光と独特の光学的性質です。将来的に光電材料として応用される可能性も秘めていますカーボンナノベルト合成の成功は、カーボンナノチューブの合成がもはや手の届かないものではないということを証明するものであり、それと同時にこういった物理化学的な分野で新たな時代を切り拓くものであると願っています。

さて、昨年9月にこの化合物の単結晶が得られ、カーボンナノベルトの合成に成功したことが確認されました。実験室全体が興奮した瞬間の映像をご覧ください(中国ではみれませんでした)。

私はこの映像をQQディスカッショングループに送った時のことを覚えています。皆、伊丹研究室の情熱的な雰囲気を感じているようでした。 ある人は「もし自分の人生が、素晴らしい仕事のために、そして恩師に拍手を送るためにあったのだとしたら、それはきっと悔いのない人生なのだろうな」と呟いていました。

伊丹先生がこの瞬間のために皆を集めた理由がわかりました。それは、化学の美しさを感じてもらうとともに、困難な道程の末に辿り着く達成感を味わってもらうためであったのです。そして、こういった仲間の偉大な業績と努力を、これから先の科学研究の原動力にしてもらいたかったのでしょう 。

 

関連リンク

Chem Station 中国語版からの翻訳・加筆記事です。

原文: 首次合成碳纳米带–背后的故事(三)完结篇 by JiaoJiao

Eine

Eine

投稿者の記事一覧

音楽ゲームが好き。ナノメートルの世界で分子や電子の気持ちを考える日々

関連記事

  1. ケムステ版・ノーベル化学賞候補者リスト【2020年版】
  2. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  3. ドーパミンで音楽にシビれる
  4. 2019年ノーベル化学賞は「リチウムイオン電池」に!
  5. 電子デバイス製造技術 ーChemical Times特集より
  6. 完熟バナナはブラックライトで青く光る
  7. 自宅での仕事に飽きたらプレゼン動画を見よう
  8. 米国へ講演旅行へ行ってきました:Part II

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 世界の中心で成果を叫んだもの
  2. 新たな製品から未承認成分検出 大津の会社製造
  3. トシルヒドラゾンを経由するカルボニル化合物の脱酸素ヒドロフッ素化反応によるフルオロアルカンの合成
  4. マリウス・クロア G. Marius Clore
  5. ハーバート・ブラウン Herbert C. Brown
  6. Dead Endを回避せよ!「全合成・極限からの一手」シリーズ
  7. Carl Boschの人生 その9
  8. EUのナノマテリアル監視機関が公式サイトをオープン
  9. 窒素 Nitrogen -アミノ酸、タンパク質、DNAの主要元素
  10. ポリエチレンなど合成樹脂、値上げ浸透

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
« 11月   1月 »
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプシュ法や記憶媒体に関する資料が登録~

国立科学博物館は、平成20年度から重要科学技術史資料(愛称:未来技術遺産)の登録を実施しています。令…

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メ…

女子の強い味方、美味しいチョコレート作りを助ける化合物が見出される

チョコレートの製造過程でリン脂質分子を添加するという方法を用いれば、複雑なテンパリング(加熱・せん断…

火力発電所排気ガスや空気から尿素誘導体の直接合成に成功

第339回のスポットライトリサーチは、産業技術総合研究所 触媒化学融合研究センタ…

CV測定器を使ってみた

「電気化学」と聞くと、難しい数式が出てきて何やらとっつきづらいというイメージがある人が多いと思います…

知られざる法科学技術の世界

皆さんは、日本法科学技術学会という学会をご存じでしょうか。法科学は、犯罪における問題を”科学と技術”…

有機合成化学協会誌2021年9月号:ストリゴラクトン・アミド修飾アリル化剤・液相電解自動合成・ビフェニレン・含窒素複素環

有機合成化学協会が発行する有機合成化学協会誌、2021年9月号がオンライン公開されました。9…

イグノーベル賞2021が発表:今年は化学賞あり!

2021年9月9日、「人々を笑わせ考えさせた業績」に送られるイグノーベル賞の第31回授賞式が行われま…

理化学研究所上級研究員(創発デバイス研究チーム)募集

理化学研究所の創発物性科学研究センターで上級研究員の公募を行っております。今回募集対象である、創…

世界最小!? 単糖誘導体から還元反応によって溶ける超分子ヒドロゲルを開発

第338回のスポットライトリサーチは、東 小百合 博士にお願いしました。ヒドロゲルはいわゆる…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP