[スポンサーリンク]

日用品

カプロラクタム (caprolactam)

[スポンサーリンク]

カプロラクタムは、環の構造を持つ炭素数6のアミドで、ナイロンの原材料となる分子。

カプロラクタム(ε-caprolactam)は、環の構造を持つアミドであり、1分子に炭素原子6個・窒素原子1個・酸素原子1個・水素原子11個を持つ物質です。ポリアミド系繊維であるナイロン6(nylon-6)の単量体です。少量の水の存在下で加熱すると、環のアミド部分が開いて次々と鎖状に結合し、開環重合が起きて、高分子化合物としてナイロン6が得られます。この合成法は1941年に東レが中心になって開発されました。

ナイロンは、軽くて柔らかく、弾力性に富みのびやすい性質があります。とくにストッキングなど合成繊維としての用途は画期的でした。ナイロンを使ったストッキングには特有のつやがあります。ナイロンは通常使用に対しては並はずれた強度を示す一方で、鋭利な岩肌には断絶されやすく登山用ロープには向かず国内で過去に事故が起きています。ナイロンには、ナイロン6の他に、アジピン酸ヘキサメチレンジアミンから作るナイロン6,6があります。

カプロラクタムの化学合成

GREEN2013caprolactam02

カプロラクタムの工業製法にはいくつかのルートがあります。従来は、紫外線照射下シクロヘキサンに塩化ニトロシルを作用させるか、シクロヘキサノンヒドロキシルアミンを作用させるかしてシクロヘキサノンオキシムを得て、これに濃硫酸下でベッグマン転位を起こす、方法が主に使われていました。これらの方法はみな、濃硫酸の中和のためにアンモニアを使用していました。そのため、大量の硫酸アンモニウムが副産してしまいます。この欠点は、21世紀に入って解決がはかられました。

住友化学が中心となって見出されたカプロラクタムの新しい製造法[1],[2],[3]は、シクロヘキサノンをシクロヘキサノンオキシムにする1段階目の反応と、シクロヘキサノンオキシムをカプロラクタムにする2段階目の反応からなります。1段階目では、チタン及びケイ素の酸化物からなるMFI構造を取ったゼオライトを触媒に使います。この反応では、チタンが触媒となりアンモニアと過酸化水素からヒドロキシルアミンが系中で生成して起こるもの、と考えられています。2段階目が新製法のポイントで、アルミニウムなど他の元素をほとんど含まない高純度のケイ素の酸化物からなるMFI構造を取ったゼオライトを触媒に使います。反応は、メタノール蒸気[1]およびアンモニア添加[1]下、温度350度[1]で行われます。濃硫酸の中和で硫酸アンモニウムが生成することはありません。通例ベッグマン転位には過酷な酸条件が要求されるため、穏和な条件でシクロヘキサノンオキシムからカプロラクタムに変換が可能であったことは珍しく、理論計算[2]によれば代わりにゼオライトのケイ素原子に隣接したヒドロキシ基が活性の本質に関与していると考えられています。なお。MFI構造とは、ゼオライトの100以上が知られる構造の1つです[4]。

GREEN2013capromfi03.png

MFI構造

分子モデル

GREEN2013caprolactammovie.gif

参考文献

  1.  “Some aspects of the vapor phase Beckmann rearrangement for the production of ε -caprolactam over high silica MFI zeolites.” Hiroshi Ichihashi et al. Catal. Today 2002 DOI: 10.1016/S0920-5861(01)00514-4
  2. “Theoretical study on vapour phase Beckmann rearrangement of cyclohexanone oxime over a high silica MFI zeolite.” Masaya Ishida et al. Catal. Today 2003 DOI: 10.1016/j.cattod.2003.10.021
  3. 住友化学の新しいε-カプロラクタム製造技術 (http://www.sumitomo-chem.co.jp/rd/report/theses/2001-2.html#report_title1)
  4. Zeolite Framework Types (http://izasc-mirror.la.asu.edu/fmi/xsl/IZA-SC/ft.xsl)
Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. シラン Silane
  2. シラフィン silaffin
  3. カスガマイシン (kasugamycin)
  4. ビリジカタムトキシン Viridicatumtoxin
  5. ペラミビル / Peramivir
  6. 二フッ化酸素 (oxygen difluoride)
  7. カフェイン caffeine
  8. カンプトテシン /camptothecin

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ラリー・オーヴァーマン Larry E. Overman
  2. カルボン酸の保護 Protection of Carboxylic Acid
  3. 米化学大手デュポン、EPAと和解か=新生児への汚染めぐり
  4. Merck 新しい不眠症治療薬承認申請へ
  5. 2017年の注目分子はどれ?
  6. 1-メチル-1-[4-(ジフェニルホスフィノ)ベンジル]ピロリジニウムブロミド:1-Methyl-1-[4-(diphenylphosphino)benzyl]pyrrolidinium Bromide
  7. 第89回―「タンパク質間相互作用阻害や自己集積を生み出す低分子」Andrew Wilson教授
  8. リンと窒素だけから成る芳香環
  9. 産学官若手交流会(さんわか)第19回ワークショップ のご案内
  10. 「天然物ケミカルバイオロジー分子標的と活性制御シンポジウム」に参加してきました

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

「未来博士3分間コンペティション2020」の挑戦者を募集

科学技術人材育成のコンソーシアムの構築事業(次世代研究者育成プログラム)「未来を拓く地方協奏プラ…

イグノーベル賞2020が発表 ただし化学賞は無し!

「人々を笑わせ、そして考えさせてくれる業績」に対して贈られるノーベル賞のパロディである「イグノーベル…

電子実験ノートSignals Notebookを紹介します ②

前回に引き続き(間がだいぶ空いてしまいましたが、、、)Signals Notebookの使い…

化学者のためのエレクトロニクス講座~有機半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第120回―「医薬につながる複雑な天然物を全合成する」Richmond Sarpong教授

第120回の海外化学者インタビューは、リッチモンド・サーポン教授です。カリフォルニア大学バークレー校…

DNAナノ構造体が誘起・制御する液-液相分離

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。液-液相分離は近年の一…

常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)

一般的な特長Rh-Pt/(DMPSi-Al2O3)は、優れた活性を示す水素還元(水添)触媒です。…

世界最高の耐久性を示すプロパン脱水素触媒

第273回のスポットライトリサーチは、北海道大学触媒科学研究所・中谷勇希さんにお願いしました。…

Chem-Station Twitter

PAGE TOP